ICE40HX1K-EVB

ICE40HX1K-EVB.jpg

Contents

Documents

Product Selection Guilde

iCE40 Family Handbook

iCE40 datasheet

Hardware

GitHub repository with the hardware files

iCE40HX1K-EVB programming connector

ICE40PGM.jpg

iCE40HX1K-EVB 34-pin bus connector

ICE40BUS.jpg

Software

Get started under Linux

To develop with iCE40HX1K-EVB you need:

   iCE40HX1K-EVB
   OLIMEXINO-32U4 as programmer (or any other Arduino compatible board)
   IDC10-15cm cable to connect iCE40HX1K-EVB with OLIMEXINO-32U4
   SY0605E 5V power supply adapter
   USB-MINI cable
   optional but recommended USB-ISO


Installing Icestorm FOSS tools for iCE40

First we need to install the tools necessary to build Icestorm:

   sudo apt-get install build-essential clang bison flex libreadline-dev \
                    gawk tcl-dev libffi-dev git mercurial graphviz   \
                    xdot pkg-config python python3 libftdi-dev

Installing the IceStorm Tools (icepack, icebox, iceprog, icetime, chip databases):

   git clone https://github.com/cliffordwolf/icestorm.git icestorm
   cd icestorm
   make -j$(nproc)
   sudo make install

Installing Arachne-PNR (the place&route tool):

   git clone https://github.com/cseed/arachne-pnr.git arachne-pnr
   cd arachne-pnr
   make -j$(nproc)
   sudo make install

Installing Yosys (Verilog synthesis):

   git clone https://github.com/cliffordwolf/yosys.git yosys
   cd yosys
   make -j$(nproc)
   sudo make install

The Arachne-PNR build converts the IceStorm text chip databases into the arachne-pnr binary chip databases. Always rebuild Arachne-PNR after updating your IceStorm installation.

Notes for Archlinux: just install icestorm-git, arachne-pnr-git and yosys-git from the Arch User Repository (no need to follow the install instructions above).


Preparing OLIMEXINO-32U4 as programmer

Download latest Arduino IDE we recommend you to use the one from Arduino.cc current revision is 1.6.9.

Copy iceprog.ino sketch from GitHub/iCE40HX1K-EVB/programmer/olimexino-32u4 firmware to examples folder.

Plug the USB cable to OLIMEXINO-32U4 and start the Arduino IDE

   cd arduino-1.6.9
   sudo ./arduino

From Tools select 'Arduino Leonardo' as board.

From same menu select the PORT where the board is attached it will be something like: '/dev/ttyACM0 (Arduino Leonardo)' or '/dev/ttyUSB0 (Arduino Leonardo)'

Open the iceprog.ino sketch

From menu Sketch - > Include Library -> Manage Libraries check if you have SPI and SPIFlash libraries installed if not install them. You need to use version 2.2.0.


Spiflash-load-2.png

Compile and Upload the sketch.

If everything completes without errors now you have your OLIMEXINO-32U4 set as iCE40HX1K-EVB programmer!

Hardware connection between OLIMEXINO-32U4 and iCE40HX1K-EVB

It is a pretty straight-forward - use a 10-pin UEXT compatible cable between the two boards (like CABLE-IDC10-15cm). However, also make sure that the switching button of OLIMEXINO-32U4 is set to position 3.3V!

The signals at the PGM1 connector of iCE40HX1K-EVB are at 3.3V DC! If you use a 5V-only board instead of OLIMEXINO-32U4 you need to drive all SPI signals to 3.3V DC externally. Else there might be a short-circuit or the connection would be unsuccessful.

Add iceprogduino to IceStorm

Copy iceprogduino folder from GitHub programmer to icestorm and build it

   cd icestorm/iceprogduino
   make clean
   make
   make install

Make LED blink with IceStorm

Copy from GitHub ice40hx1k-evb to icestorm/examples then

   cd icestorm/examples/ice40hx1k-evb
   make
   make prog

LED1 and LED2 should start blink which means the code is successfully loaded


Iceprog with Raspberry PI

This section is contributed by Andreas Seltenreich


Iceprog.jpg

If you have a raspberry PI around, you can use the flashrom utility with Linux’ /dev/spidev to program a bitstream to your ICE40HX1K-EVB. The following table shows the wiring required for the Pi B+ or 2. I used IDC connectors with a rainbow ribbon for convenient wiring (image above).

   | Raspi 2/B+ |          | ICE40-EVB |              | comment  |
   |------------+----------+-----------+--------------+----------|
   |         17 | =3v3=    |         1 | =3v3=        |          |
   |         18 | =gpio24= |         6 | =creset=     |          |
   |         19 | =mosi=   |         8 | =sdo=        |          |
   |         20 | =gnd=    |         2 | =gnd=        |          |
   |         21 | =miso=   |         7 | =sdi=        |          |
   |         22 | =gpio25= |         5 | =cdone=      | optional |
   |         23 | =clk=    |         9 | =sck=        |          |
   |         24 | =ce0=    |        10 | =#cd = ss_b= |          |
   |         25 | =gnd=    |           |              |          |
   |         26 | =ce1=    |           |              |          |


enable SPI device on the Pi (needs reboot)

echo dtparam=spi=on >> /boot/config.txt


build and install flashrom

git clone https://www.flashrom.org/git/flashrom.git
cd flashrom
make CONFIG_ENABLE_LIBPCI_PROGRAMMERS=no CONFIG_ENABLE_LIBUSB0_PROGRAMMERS=no CONFIG_ENABLE_LIBUSB1_PROGRAMMERS=no install


claim GPIO24 for sysfs-control

echo 24 > /sys/class/gpio/export


Pull GPIO24 low to put the ice40 into reset. The cdone-LED on the board should turn off.

echo out > /sys/class/gpio/gpio24/direction


Read the flash chip at 20MHz (for short cabling)

flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=20000 -r dump


Simply swap -r for -w to write the dump back

flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=20000 -w dump


As generated bitstreams are smaller than size of the flash chip, you need to add padding for flashrom to accept them as image. I used the follwing commands to do that:

tr '\0' '\377' < /dev/zero | dd bs=2M count=1 of=image
dd if=my_bitstream conv=notrunc of=image


Deassert creset to let the ice40 read the configuration from the bus:

echo in > /sys/class/gpio/gpio24/direction

Get started under Windows

Projects

Under construction

FAQ

Under construction