A10-OLINUXINO-LIME
and
A10-OLINUXINO-LIME-4GB

Open-source single-board Android/Linux mini-computer

USER’S MANUAL

Document revision I, December 2015
Designed by OLIMEX Ltd, 2015

All boards produced by Olimex LTD are ROHS compliant
DISCLAIMER

© 2015 Olimex Ltd. Olimex®, logo and combinations thereof, are registered trademarks of Olimex Ltd. Other product names may be trademarks of others and the rights belong to their respective owners.

The information in this document is provided in connection with Olimex products. No license, express or implied or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Olimex products.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://www.creativecommons.org/licenses/by-sa/3.0/.

This hardware design by Olimex LTD is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

The software is released under GPL.

It is possible that the pictures in this manual differ from the latest revision of the board.

The product described in this document is subject to continuous development and improvements. All particulars of the product and its use contained in this document are given by OLIMEX in good faith. However all warranties implied or expressed including but not limited to implied warranties of merchantability or fitness for purpose are excluded. This document is intended only to assist the reader in the use of the product. OLIMEX Ltd. shall not be liable for any loss or damage arising from the use of any information in this document or any error or omission in such information or any incorrect use of the product.

This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by OLIMEX to be a finished end-product fit for general consumer use. Persons handling the product must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards.

Olimex currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. Olimex assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

THERE IS NO WARRANTY FOR THE DESIGN MATERIALS AND THE COMPONENTS USED TO CREATE A10-OLINUXINO-LIME AND A10-OLINUXINO-LIME-4GB. THEY ARE CONSIDERED SUITABLE ONLY FOR, RESPECTIVELY, A10-OLINUXINO-LIME OR A10-OLINUXINO-LIME-4GB.
Table of Contents

DISCLAIMER...2

CHAPTER 1: OVERVIEW..5

1. Introduction to the chapter...5
2. Features...5
3. Target market and purpose of the board...6
4. Board variants..6
5. Board version used in the manual...6
6. Document organization...7

CHAPTER 2: SETTING UP THE OLINUXINO BOARD..8

2. Introduction to the chapter..8
2.1 Electrostatic and electrical polarity warning...8
2.2 Requirements..8
2.3 Powering the board..10
2.4 Button functions...11
2.5 Changing the default image resolution..11
2.6 Connecting and calibrating a display..12
2.6.1 Android calibration..13
2.6.2 Debian calibration..13
2.7 GPIO under Debian ...13
2.8 I2C and SPI under Debian..14
2.9 Software support..15

CHAPTER 3: A10-OLINUXINO-LIME BOARD DESCRIPTION...16

3. Introduction to the chapter..6
3.1 Layout (top view)...16
3.2 Layout (bottom view)..17

CHAPTER 4: THE ALLWINNER A10 MICROCONTROLLER..18

4. Introduction to the chapter..18
4.1 The processor...18

CHAPTER 5: CONTROL CIRCUITY...20

5. Introduction to the chapter..20
5.1 Reset..20
5.2 Clocks..20
5.3 Power supply circuit...20

CHAPTER 6: CONNECTORS AND PINOUT..21

6. Introduction to the chapter..21
6.1 Communication with LIME..21
6.1.1 UART0 interface...21
6.2 MicroSD card connector..22
6.2.1 SD/MMC1 slot...22
6.3 PWR jack.. 23
6.4 USB_OTG connector .. 24
6.5 USB_HOST connectors.. 26
6.6 Ethernet.. 26
6.7 HDMI connector... 29
6.8 SATA connector and power... 30
6.9 GPIO ports.. 31
 6.9.1 GPIO-1 (General Purpose Input/Output) 40pin connector .. 31
 6.9.2 GPIO-2 (General Purpose Input/Output) 40pin connector .. 33
 6.9.3 GPIO-3 (General Purpose Input/Output) 40pin connector .. 34
 6.9.4 GPIO-4 (General Purpose Input/Output) 20pin connector .. 34
6.10 LCD_CON 40pin connector... 35
6.11 Jumper description.. 36
6.12 Additional hardware components .. 37

CHAPTER 7: SCHEMATICS... 38
 7. Introduction to the chapter ... 38
 7.1 Eagle schematic... 38
 7.2 Physical dimensions.. 39

CHAPTER 8: REVISION HISTORY AND SUPPORT... 40
 8. Introduction to the chapter ... 40
 8.1 Document revision .. 40
 8.2 Board revision.. 41
 8.3 Useful web links and purchase codes .. 42
 8.4 Frequently asked questions .. 43
 8.5 Product support... 46
CHAPTER 1: OVERVIEW

1. Introduction to the chapter

Thank you for choosing this OLinuXino single board computer from Olimex! This document provides a user’s guide for the Olimex A10 LIME board. As an overview, this chapter gives the scope of this document and lists the board’s features. The document’s organization is then detailed.

The A10-OLinuXino-LIME development board enables code development of applications running on the A10 microcontroller, manufactured by Allwinner Technology from China.

OLinuXino is an open-source, open-hardware project and all documentation is available to the customer.

1.1 Features

The board has the following set of features:

- A10 Cortex-A8 CPU 1GHz and Mali 400 GPU
- 512MB DDR3 RAM memory
- 4GB NAND FLASH memory (available only on the 4GB version of the board)
- SATA connector with 5V SATA power jack
- Capable of HD (720p) video playback
- Native HDMI connector
- 2 x USB High-speed host with power control and current limiter
- USB-OTG with power control and current limiter
- 100MBit native Ethernet
- Battery connector with battery-charging capabilities
- LCD row of pins (0.05" step)
- 160 GPIOs on four GPIO rows of pins (0.05" step)
- MicroSD card connector
- DEBUG-UART connector for console debug with USB-SERIAL-CABLE-F
- GPIO LED
- Battery charge status LED
- 5V input power supply, noise immune design
- Power LED
- 2KB EEPROM for MAC address storage and more
- 3 BUTTONS with ANDROID functionality + RESET button
- 4 mount holes
- PCB dimensions: (3005×2345) mils ~ (76×59) mm
1.2 Target market and purpose of the board

The boards from the OLInuXino family are easy to setup and powerful. It is possible to use them in almost any application as a host board. They are suitable for embedded programming enthusiasts, Linux and Android gadget fans (they can just use the board as a media center or fully functional Linux-PC, for instance) and also professionals (since its low cost makes it very good solution for application-orientated embedded systems). The main usage of the board is software embedded development without the urge of understanding perfectly the hardware.

The LIME boards are a special kind of OLInuXino boards – they are as small as possible while maintaining a remarkable stand-alone functionality. The strong points of the boards are the processor speed, the small form factor and the low price-to-productivity ratio.

Customers have full access to the technical documentation of the board. The software is released under General Purpose License and the board is considered open-hardware – all schematics and board design files are available to the customer under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

1.3 Board variants

There are two major board variants named: A10-OLInuXino-LIME and A10-OLInuXino-LIME-4GB. The 4GB version has a built-in NAND memory that allows the storage of an operating system without the need of a SD card.

The A20-OLInuXino-LIME and A20-OLInuXino-LIME-4GB boards are almost identical to, respectively, A10-OLInuXino-LIME and A10-OLInuXino-LIME-4GB with the only difference being the processor mounted. This brings different processor speed and productivity. The A10 has a single Cortex A8 core. The A20 has a dual-core Cortex A7. This makes the A20 boards more powerful and suitable for heavier computational tasks, but more power-hungry. The processor swap is possible since the A10 and A20 processors are pin-to-pin compatible.

The A20-OLInuXino-LIME2 (note the “2”) board is similar to A20-OLInuXino-LIME and A10-OLInuXino-LIME but it has Gigabit Ethernet and double the RAM memory (1GB compared to 512MB).

1.4 Board version used in the manual

Revision C boards and resources were used while writing this document. It is possible that they are outdated so it is always recommended to download the latest sources from the GitHub page of the board (https://github.com/OLIMEX/OLINUXINO/tree/master/HARDWARE).

Please note that A10-OLInuXino-LIME design is almost identical to the design of its predecessor A20-OLInuXino-LIME – the only difference being the processor. Even then the processors are pin-to-pin compatible. Some documents or software may be suitable for both the A10 and the A20 LIME boards but it is generally advised to use resources for the specific board.
1.5 Document organization

Each section in this document covers a separate topic, organized as follows:

– Chapter 1 is an overview of the board usage and features
– Chapter 2 provides a guide for quickly setting up the board and software notes
– Chapter 3 contains the general board diagram and layout
– Chapter 4 describes the component that is the heart of the board: the A10 – Allwinner processor
– Chapter 5 is an explanation of the control circuitry associated with the microcontroller
– Chapter 6 covers the connector pinout, peripherals and jumper description
– Chapter 7 provides the schematics and the dimensions of the board
– Chapter 8 contains the revision history, useful links and support information
CHAPTER 2: SETTING UP THE OLINUXINO BOARD

2. Introduction to the chapter

This section helps you set up the OLinuxino development board for the first time. Please consider first the electrostatic warning to avoid damaging the board, then discover the hardware and software required to operate the board.

The procedure to power up the board is given, and a description of the default board behavior is detailed.

2.1 Electrostatic and electrical polarity warning

OLinuxino is shipped in a protective anti-static package. The board must not be exposed to high electrostatic potentials. A grounding strap or similar protective device should be worn when handling the board. Avoid touching the component pins or any other metallic element.

Ensure that your development board gets attached to properly working hardware. For example, it is common for cheap HDMI monitors to lack grounding. Avoid TVs which have no grounding on their power supply cable! If you can’t avoid them try to add the grounding yourself, if this is not possible please use USB-ISO to save your development board from potential over voltage.

If you connect other electrical devices to the LIME board make sure that they have equal electrical polarity. For example, when you connect an HDMI cable between a TV and the board it is a good idea to have them both connected to the same electrical source (to the same utility power socket). This might be said for a serial cable connected between a PC and the board's DEBUG port. In rare cases different polarity might cause hardware damage to the board.

2.2 Requirements

In order to set up the A10-OLinuxino-LIME optimally one or more additional items may be used. They might be generally placed in three categories:

- **Required** – items that are needed in order to achieve minimum functionality;
- **Recommended** – items that is good to have in order to be able to interact with the most important of the features of the board;
- **Additional** – items that provide access to additional features or expand the features of the board.

Required items:
- USB type A to USB mini cable – to connect to a personal computer; used for powering the board and uploading new Android image to the NAND memory (if your board has 4GB NAND)
- Input device – either a mouse/keyboard or touchscreen LCD
- Output device – either HDMI cable + native HDMI monitor/screen/projector; or USB-SERIAL-CABLE-F + personal computer (for Linux and/or Android debugging)
- SD card with compatible image – if you have the board version with NO additional NAND memory you will need it to use one of the images available.
Recommended items:
- External USB hub – to split the USB_HOST mounted on the board; you need that to connect more USB devices
- External power supply unit – 5V DC, 5W required – for optimal power
- A10-OLinuxino-LIME-BOX – an aesthetic box specially made for the board that protects it from dust and accidental short-circuits
- USB-SERIAL-CABLE-F – for Android/Linux debugging on UART0

Additional items include:
- A10-OLinuxino-LIME-UEXT and CABLE-IDC40-15cm and CABLE-40-40-10CM – an adapter board and two cables suitable for Olimex LCD connection
- Small heatsink for the processor – during long video playbacks the A10 processor might heat up
- External 2.5" SATA hard disk drive (proper cables sold)
- Ethernet cable for wired Ethernet
- Back-up Li-Po battery with a proper connector

Important note on requirements:

The board works with 2.5" SATA hard disks that can be powered by 5V source from the board! For the 3.5" hard disks you would probably need to provide external 12V supply.

It is a very good idea to have a USB-SERIAL-CABLE or similar cable since it allows you to:

1. Change display output settings for Debian easily
2. Debug the board via any personal computer even if there are problems with the video output

Some of the above-suggested items can be purchased by Olimex, for instance:

SY0605E – reliable power supply adapter 50Hz (for EU) 5V/1A for A10-OLinuxino-LIME
SY0605E-CHINA – cheaper power supply adapter 50Hz (for EU) 5V/1A for A10-OLinuxino-LIME
A10-Android-SD – a tested class 10 micro SD card with the latest (by the time of leaving the Olimex facilities) official Android release
A10-Debian-SD – a tested class 10 micro SD card with the latest (by the time of leaving Olimex facilities) official Debian Linux release
USB-SERIAL-CABLE-F – female USB serial console cable
A10-OLINUXINO-LIME-UEXT – GPIO adapter which makes LIME GPIOs available in breadboard friendly 0.1” step connectors, needed if you want to connect an older Olimex-made display to the board (newer displays listed below have 0.05” step connector)
CABLE-40-40-10CM – 0.05” step cable for connecting a new display to the board
LCD-OLINUXINO-4.3TS – low-cost 4.3” LCD display with touchscreen component – 480×272
LCD-OLINUXINO-7TS – low-cost 7” LCD display with optional touchscreen component – 800×480
LCD-OLINUXINO-10TS – low-cost 10” LCD display with optional touchscreen component – 1024×600
CABLE-IDC40-15cm – 0.1” step cable for connecting an LCD to A10-OLinuxino-LIME-UEXT
SATA-HDD-2.5-500GB – 5GB 2.5” SATA hard disk
SATA-CABLE-SET – cables that allow the connection of a 2.5” hard disk to the board
ALUMINIUM-HEATSINK-20×20×6MM – heatsink radiator for better processor heat dissipation
2.3 Powering the board

There are three possible ways of powering A10-OLinuXino-LIME – via external supply providing 5V DC at the power jack, from 5V USB port via USB_OTG connector or from 3.7V Li-Po battery via the LIPO_BAT. Note that the board might consume up to 650mA of current at 5V when there are no peripherals connected to the USB hosts. Make sure your power supply is able to provide at least 1A before. Depending on your preferred way of powering you might need additional hardware.

Important: Not all USB ports would be able to provide enough power for the board. Try using another USB port/USB hub or a cable of higher quality.

If you have an LCD display connected to the board or external 2.5” hard disk then the USB will NOT be sufficient source of power.

The best practice is to never count on the mini USB-OTG as a single source of power for the board!

The preferred way of powering the board is via the PWR jack with 5V DC. This would make the board fully powered and able to power all the peripherals connected to it.

Note that when powering the board from the USB_OTG, the current provided might be insufficient to also power a bigger LCD connected to the LCD_con. However, this power option is capable of driving the board when using external display connected to the HDMI connector.

The typical consumption of A10-OLinuXino-LIME is between 400mA and 750mA depending on the current load.

If the board has entered power-down state you can bring it back without restart using the PWR_BUT. The PWR_BUT is also used to start the board when powered from a Li-Po battery on the battery connector.

Sometimes when starting Android it is possible the board to enter battery save mode even before booting fully. Especially, if you have turned off the board without quick boot mode enabled. In this case you should press the PWR button for at least 5 seconds which would allow the board to start.

For the European customers we sell two power supply adapters, please check chapter 2.2. We also sell USB OTG to USB type A cables if you lack such.

The default username/password combination for the default Linux image on the SD card (if purchased) is: root/olimex.

Note that it is normal that when the board is powered some integrated circuits might appear hotter than others. This is perfectly normal for some chips – for instance – voltage regulators and the main processor.
2.4 Button functions

The below three buttons usually are supported under both Android and Debian:

PWR – used to perform software turn off, software turn on; used to turn on board when powered by battery – has to be held down for at least 5 seconds to perform each action
RESET – used for hardware reset of the board – it is not recommended
RECOVERY – used to wake up the board from sleep

It is recommended to always make a soft “turn off” of the board. If that is not possible then please hold PWR button down for a few seconds to “turn off the board”. Then you are free to remove the power supply. If you disconnect the power supply (either the USB, the battery or the power jack) before turning off the board you may corrupt your SD card. If you have placed NAND memory you can corrupt the image on the NAND memory.

2.5 Changing the default image resolution

Depending on the display or the screen you want to use with the A10-OlinuXino-LIME, you might need to apply software changes to the prebuilt Android or Linux image.

Generally, this means that you would need to edit the configuration file script.bin and edit the settings inside. This file is usually located in Script.bin can't be opened in the binary format so you would need to convert it to .fex file format first. There are ready-to-use tools that convert script.bin <-> script.fex. Note that script.bin/fex contains configuration settings and definitions not only for the video output but also for the pin descriptions and names; power setting and much more. If you really want to modify and customize the default images (to change port functions, port names, to disable specific peripherals) you would need to be able to edit the script files. Please refer to the following web page for more information: http://linux-sunxi.org/Fex_Guide

The typical OlinuXino user would not need to edit the files, however.

To ease the process of changing the resolution we have compiled a number of Android images for the Android users (with hard-coded video output settings). Alternatively, for Debian Linux users, we have provided a shell script that can be executed in order to set preferred video output and resolution.

For Android that you boot from the NAND memory you would need an image suitable for the specific resolution. Download locations to such images might be found at the wiki article for the A10 board here: https://www.olimex.com/wiki/A10-OLinuXino-LIME.

For Linux Debian you would need to execute a shell script to be able to change the resolution. It is very good idea to use a serial cable for connection to the board from a personal computer since in this case you are dependent on a video resolution (a cable like USB-SERIAL-CABLE-F). When the board boots type:

```
./change_display*
```

or
and choose the resolution and the interface (LCD, HDMI or VGA).

The supported resolutions are listed below.

For LCD:
1. 4.3" (480×272)
2. 7" (800×480)
3. 10" (1024×600)

For HDMI:
0. 480i
1. 576i
2. 480p
3. 576p
4. 720p50
5. 720p60
6. 1080i50
7. 1080i60
8. 1080p24
9. 1080p50
10. 1080p60

For VGA (please note that the VGA lacks a connector – more instructions on the VGA signals might be found in the chapter 6):
0. 1680×1050
1. 1440×900
2. 1360×768
3. 1280×1024
4. 1024×768
5. 800×600
6. 640×480
7. 1920×1080
8. 1280×720

2.6 Connecting and calibrating a display

One of the ways to interact with the board is via an external display (with or without touchscreen component). If you want to use a display for video output from the LIME board the best way is to use the LCD_CON row of pins.

Note that unlike other OLinuXino boards A10-OLinuXino-LIME the row of pins that allows the user to connect a display has smaller step (0.05''). The corresponding connectors in previous OLinuXino boards had a step of 0.1''. This means that if you use a display made by OLIMEX, you would need additional hardware to adapt the pin-step accordingly. You can either make such adapter (or cable)
yourself, following the schematics of the display and the board or purchase it from us.

With newer Olimex-made displays you can use a single cable with 0.05" step. The new revisions of displays have both 0.1" step connector and 0.05" step connectors.

If your Olimex-made display has only a single 0.01" step connector you would need two 40 pin cables (CABLE-40-40-10CM and CABLE-IDC40-15cm) that connect to a small adapter board called A10-OLinuXino-LIME-UEXT. I recommend you to take a look at the pages of the adapter and the cables even if you decide to make it yourself – there are schematics available for download.

2.6.1 Android calibration

Calibrating a display under Android is pretty straightforward from the Android application.

Important: initially the boards are calibrated for a specific display and resolution. If you re-write the image (no matter whether the SD card or the NAND memory) you might need to use a mouse to calibrate the display initially. It might be impossible to calibrate it via touching the display.

2.6.2 Debian calibration

The command that allows calibrating in Debian Linux is:

```bash
ts_calibrate
```

The default Debian setup is made with settings for HDMI 720p/60Hz. If you want to change some other LCD, VGA or HDMI resolution then you have to start script file in /root directory.

If the problem is under Debian Linux make sure you are properly logged in the XFCE interface! Else applying calibration would not happen for the current user – if you are calibrating from the X graphical interface make sure that you are logged as user “olimex” (if calibrating without the X, the user is “root”).

```bash
# su olimex

enter the password: olimex

calibrate the touch screen and reboot the board

# sudo reboot
```

2.7 GPIO under Debian

You can read data from a given GPIO port. The logical ranges are usually as follows:

- 0V-1V for LOW (or 0)
- 2.4V-3.3V for HIGH (or 1)

All voltages are measured against ground (GND).
If the input signal is too high, you will at least destroy the port!

The algorithms for writing a value to a GPIO port and reading such a value are pretty similar. The usage of GPIO ports follows the algorithm (we would use GPIO #49 for demonstration purposes):

1. Export GPIO 49:

```bash
echo 49 > /sys/class/gpio/export
```

Note that you can export GPIOs in range with:

```bash
for i in `seq 1 1 230`; do echo $i > /sys/class/gpio/export; done
```

2. Set input/output GPIO 49

2.1 Set input:

```bash
echo "in" > /sys/class/gpio/gpio49_ph9/direction
```

2.2 Set output:

```bash
echo "out" > /sys/class/gpio/gpio49_ph9/direction
```

3. Set value or read value GPIO 49

3.1 Set value:

```bash
echo 0 > /sys/class/gpio/gpio49_ph9/value
echo 1 > /sys/class/gpio/gpio49_ph9/value
```

3.2 Read input:

```bash
cat /sys/class/gpio/gpio49_ph9/value
```

4. Unexport GPIO 49 when finished

```bash
echo 49 > /sys/class/gpio/unexport
```

A very good document on GPIO usage might be found here:

http://www.py6zgp.com/download/A20-GPIO.pdf – the document was created by Dr. Guido Pelz.

2.8 I2C and SPI under Debian

I2C and SPI are both supported in the latest Debian releases. There is respective kernel support for both. There is a python module called pyA10Lime might be found here:

https://pypi.python.org/pypi/pyA10Lime

At the same web address you would also find a set of examples on how module is used.
2.9 Software support

We maintain Linux and Android images for SD card which might be downloaded for free and modified as the user wishes. The latest images and updates are featured at the wiki article of the device: https://www.olimex.com/wiki/A10-OLinuXino-LIME.

We usually try to provide details on how to build the Linux and the Android images at our wordpress page: http://olimex.wordpress.com/.

Another useful place is the Olimex forums where a lot of people share their experience and advice: https://www.olimex.com/forum/.

Additional Android and Linux support and features are added overtime. The Linux support is a work-in-progress and you should not expect full Linux support after the initial volume of such boards have become available on the market. If you are in a hurry consider the older OLinuXino designs (which have almost everything supported, have examples available and so on).

You are more than welcome to send or share your suggestions and ideas at our e-mail, the public forums or irc channel. We would attempt to help in almost every case. We listen to the feedback and if the majority of users suggest a software change or update we try to implement such. Customer feedback is very important for the overall state of the software support. However, do not expect full Linux or Android software support.

We can share our experience. We can give you full details for things we have tried. We can point you to a resource or a guide. We can give you general directions to solving a specific problem or places to look for more information. However, we won't install a piece of software for you or write custom program for you. We won't provide a specific software solution to a specific software problem.
CHAPTER 3: A10-OLINUXINO-LIME BOARD DESCRIPTION

3. Introduction to the chapter

Here you get acquainted with the main parts of the board. Note the names used on the board might differ from the names used below to describe them. For the actual names check the A10-OLinuxino-LIME board itself.

3.1 Layout (top view)

The picture below shows the top side of the board and highlights the most important parts:
3.2 Layout (bottom view)

At the bottom are located mainly the buttons and microSD card connector.

You should be careful of the surface that you use to place the board.
CHAPTER 4: THE ALLWINNER A10 MICROCONTROLLER

4. Introduction to the chapter

In this chapter is located the information about the heart of OLinuXino – its microcontroller. The information is a modified version of the datasheet provided by its manufacturers.

4.1 The processor

The features of the A10 processor according to the manufacturer Allwinner:

- **CPU**
 - ARM Cortex™-A8
 - 32KB I-Cache
 - 32KB D-Cache
 - 256KB L2 Cache

- **GPU**
 - ARM Mali-400

- **VIDEO**
 - UHD 2160P video decoding
 - 3D video decoding
 - Support various video decoding formats, including VP8, AVS, H. 264 MVC, VC-1, MPEG-1,2,4, etc
 - H.264 HP video encoding up to 1080p @ 30 fps or dual-channel 720p @ 30 fps

- **DISPLAY**
 - Multi-channel HD display
 - Integrated HDMI 1.4
 - YPbPr, CVBS, VGA
 - Multiple LCD interfaces, including CPU, RGB, LVDS up to Full HD

- **MEMORY**
 - 32-bit DDR2/DDR3 with memory capacity up to 16G bits
 - SLC/MLC/TLC/DDR NAND
 - 8 flash chips, 64-bit ECC
 - Memory capacity up to 64GB
 - Support NAND of 5xnm, 4xnm, 3xnm, 2xnm, etc
 - Support NAND of Samsung, Toshiba, Hynix, etc

- **BOOT**
 - NAND Flash
 - SPI NOR Flash
 - SD Card
 - USB
More information can be found on Allwinner's web site at the following web-address:

A good source of information on the processor is the linux sunxi wiki article: http://linux-
sunxi.org/A10.
CHAPTER 5: CONTROL CIRCUITY

5. Introduction to the chapter

Here you can find information about reset circuit and quartz crystals locations, the power supply circuit is also briefly discussed.

5.1 Reset

The board has hardware reset controlled by the AXP209 power system management IC.

It is a good practice to perform software reset of the board. Performing reset by disconnecting the power supply might lead to software corruption of the operating system of choice.

5.2 Clocks

25 MHz quartz crystal Q1 is connected to pins X1 and X2 of the RTL8201CP Ethernet controller.

32 768 Hz (RTC) quartz crystal Q2 is found at pins F1 and F2 of the A10 microcontroller.

24 MHz quartz crystal Q3 is found at pins N22 and N23 of the A10 microcontroller.

5.3 Power supply circuit

The power supply is handled mainly by AXP209 power management system, an Allwinner chip that goes together with the A10 processor. It is mounted on the board but since it is relatively hard to find we also sell it separately.

The power supply circuit of A10-OLinuXino-LIME requires input supply of 5V. The minimum wattage is 2.5W, and this threshold may rise if using a lot of devices on the USB-HOST (via external hub), a lot of GPIOs or you have a display connected to the LCD_CON or a hard disk powered from the 5V_SATA_PWR connector. If a discharged Li-Po battery is connected to the respective connector the power consumption of the whole LIME board might rise enormously, since the built-in battery charger would attempt to recharge it.

For more info on how to power the board refer to chapter “2.3 Powering the board”.
CHAPTER 6: CONNECTORS AND PINOUT

6. Introduction to the chapter

In this chapter are presented the connectors that can be found on the board all together with their pinout and notes about them. Jumpers functions are described. Notes and info on specific peripherals are presented. Notes regarding the interfaces are given.

6.1 Communication with LIME

The direct communication method is via the serial interface. Through male UART0 connector capable of delivering some information on the COM port of your computer – and then use your favorite terminal program (puTTy, teraterm, etc) to receive the data/send commands. You can use USB-SERIAL-CABLE-F with the UART0 interface allowing you to connect to a personal computer with a free USB port.

Note that the levels at board's UART0 are in CMOS level and you would need a MAX232 convertor to bring them to TTL one!

It is highly recommended to own a USB-SERIAL-CABLE-F (or similar product) at hand when debugging – the video output is not always reliable and if you set wrong display settings you might be unable to recover the settings without a proper UART0 connection.

The more indirect ways of communicating with the board are via peripheral devices – mouse and keyboard, via a touch screen LCD that is connected on LCD_CON connector and others.

6.1.1 UART0 interface

The UART0 interface might be used for serial communication between the board and a personal computer by default. In case of video output problem a cable might provide needed feedback and greatly reduce the efforts needed to repair the board or to adjust the software setting.

Note that by default only UART0 is defined as a port suitable for serial debug. You can use our USB-SERIAL-CABLE-F for debugging.

Consider table below when connecting the USB-SERIAL-CABLE-F according to the wire color code. The RX line of the cable (GREEN wire) should go to TX line of the target board; the TX line of the cable (RED wire) should go to the RX line of the target board. The BLUE wire should go to the target's GND line.

<table>
<thead>
<tr>
<th>UART0</th>
<th>Pin #</th>
<th>Signal name</th>
<th>Processor pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART0-TX</td>
<td>1</td>
<td>UART0-TX</td>
<td>A7</td>
</tr>
<tr>
<td>UART0-RX</td>
<td>2</td>
<td>UART0-RX</td>
<td>B7</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>GND</td>
<td>-</td>
</tr>
</tbody>
</table>
6.2 MicroSD card connector

The micro SD card slot is primarily used for booting the operating system.

The board works with micro SDHC cards up to 32GB of storage.

As a general precaution be careful with the SD cards you purchase. There is a big percentage of fake cards due to the low effort required to counterfeit popular brands and the big demand for SD cards worldwide. When in doubt – try the same operation with another card from another brand.

Olimex sells microSD cards with Linux or Android images, that have been tested – please refer to chapter “2.2 Requirements”. Of course, if you already have a large enough microSD card you can download the official Linux image from the wiki pages: https://www.olimex.com/wiki/A10-OLinuXino-LIME.

When removing the card, please make sure that you release it from the connector by pushing and NOT by pulling the card directly (this can damage both the connector and the microSD card).

6.2.1 SD/MMC1 slot

The schematic related to the SD/MMC1 (microSD connector) is shown below:

SD/MMC1 slot is the microSD card slot, located on the top of the board.

This slot is typically used for booting the OS, due to the larger capacities of the microSD cards (compared to SD or MMC cards). It is suggested to have an SD card with a proper Linux/Android image especially if you have ordered a version of the board without NAND memory. It is also recommended to use Class 10 (10MByte/sec) card for faster read/write operations, lower class cards (especially higher capacity ones) might slow down the whole system.
SD/MMC1 connector

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Connector signal name</th>
<th>Wire name (processor pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DAT2/RES</td>
<td>SD0-D2 (K19)</td>
</tr>
<tr>
<td>2</td>
<td>CD/DAT3/CS</td>
<td>SD0-D3 (K20)</td>
</tr>
<tr>
<td>3</td>
<td>CMD/DI</td>
<td>SD0-CMD (L19)</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>CLK/SCLK</td>
<td>SD0-CLK(L20)</td>
</tr>
<tr>
<td>6</td>
<td>VSS2</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>DAT0/DO</td>
<td>SD0-D0(M19)</td>
</tr>
<tr>
<td>8</td>
<td>DAT1/RES</td>
<td>SD0-D1(M20)</td>
</tr>
</tbody>
</table>

Additionally, there are the WP and CP switches that are responsible, respectively, for sensing whether the card is locked for reading and whether there is a card inserted.

6.3 PWR jack

The power jack used is the typical one used by Olimex in most of our products – the DC barrel jack has 2.0mm inner pin and 6.3mm hole. More information about the exact component might be found here: https://www.olimex.com/wiki/PWRJACK.

You should provide 5 volts direct current and the required current may vary depending on the peripherals connected to the board. The power supply you use should be capable of providing at least 1A of current.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power input</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

More info about the power supply can be found in chapter 5 of this manual.
6.4 USB_OTG connector

The main way of changing the firmware image located on the NAND of A10-OLinuxino-LIME-4GB is via the USB-OTG connector. How to change the firmware is explained after the hardware details. The part of the schematic related to the USB_OTG is shown below:

The USB_OTG features Low Loss Power Distribution Switch SY6280 which protects the board in case the devices you have plugged to the USB_OTG attempt to draw more current than 523mA combined. The maximum current available on the 5V USB_OTG is exactly 523mA.

The SY6280 responsible for the USB_OTG is enabled by USB0-DRV (processor pin C12, port B9), thus the USB_OTG is also controlled by the same signal.

Please note that the USB0-DRV (pin C12, port B9) is multiplexed with the I2S_DO1 signal! If you are going to use the I2S audio interface then you would probably need to change the position of the SMT jumper PB9/PH7_USB which by default connects USB_OTG to the PB9. This operation would require cutting between the pads of the default position with a very sharp object and then soldering the pads of the other position together. Doing so you would be able to use both the USB_OTG (via port PH7 this time) and the I2S interface.

Additionally, PB9/PH7_GPIO jumper controls which of the two ports (PB9 or PH7) should be lead out to pin 9 of GPIO3 connector for easier access. By default this jumper is in PH7_GPIO position and PH7 is lead to pin 9 of GPIO3.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal name</th>
<th>Processor pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V_OTG_PWR</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>UDM0</td>
<td>N20</td>
</tr>
<tr>
<td>3</td>
<td>UDP0</td>
<td>N21</td>
</tr>
<tr>
<td>4</td>
<td>USB0-IDDET</td>
<td>B5</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-</td>
</tr>
</tbody>
</table>
The connector case is also grounded.

We have configured an Android image with settings suitable for A10-OLinuXino-LIME. You can upload it to the board with LiveSuit software via the USB-OTG. The image is available for users to try and tweak the settings. The images can be downloaded from the wiki article at: https://www.olimex.com/wiki/A10-OLinuXino-LIME.

The board variant without NAND needs an SD card with bootable OS – Android or Linux. There are ready images available for download at the above-linked A10 wiki article.

To upload the Android image to the NAND follow these steps:

1. Install and run PhoenixSuit (can be found in the wiki article of the board).

2. Go to firmware tab of the program and point to a valid Android image (the latest official one may also be downloaded from the wiki article).

3. Disconnect the power supply and USB cable from the A10 board.

4. Press and hold RECOVERY button, apply power supply 5V, release RECOVERY button.

5. Connect USB cable to the mini USB connector

6. You will be asked for drivers for the bootloader. Navigate to the folder where you extracted the PhoenixSuit and install the drivers from the respective executables (or manually point the installer to the drivers folder in the PhoenixSuit installation path).

7. PhoenixSuit will detect the board and would ask for the method of writing the image. Choose method of writing the image and confirm your wish to write the image.

8. Wait till upgrade succeeds as shown below:
6.5 USB_HOST connectors

The part of the schematic related to the USB_HOST connectors is listed below:

There are two USB host connector featured on the board. They are called USB_HOST1 and USB_HOST2. Each of them has own connector, both situated near the Ethernet connector. Each of connector has own low loss power distribution switch SY6280 which protects the board in case the devices you have plugged to the board try to draw more current than 523mA combined. The maximum current available on each of the USB hosts is exactly 523mA.

The SY6280 responsible for the USB_HOST1 is enabled by USB0-DRV1 (processor pin A4).

The SY6280 responsible for the USB_HOST2 is enabled by USB0-DRV2 (processor pin A5).

<table>
<thead>
<tr>
<th>USB_HOST1</th>
<th>Signal name</th>
<th>Processor pin</th>
<th>USB_HOST2</th>
<th>Signal name</th>
<th>Processor pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin #1</td>
<td>5V</td>
<td>Connected to SY628</td>
<td>Pin #1</td>
<td>5V</td>
<td>Connected to SY628</td>
</tr>
<tr>
<td>Pin #2</td>
<td>UDM1</td>
<td>P20</td>
<td>Pin #2</td>
<td>UDM2</td>
<td>R20</td>
</tr>
<tr>
<td>Pin #3</td>
<td>UDP1</td>
<td>P21</td>
<td>Pin #3</td>
<td>UDP2</td>
<td>R21</td>
</tr>
<tr>
<td>Pin #4</td>
<td>GND</td>
<td>-</td>
<td>Pin #4</td>
<td>GND</td>
<td>-</td>
</tr>
</tbody>
</table>

The GND is common for both levels of the USB_HOST.

6.6 Ethernet

The LIME board is equipped with a standard RJ45 Ethernet connector at the top of the board that allows you to access local network via an Ethernet cable.

The LAN connectivity is handled by Realtek’s RTL8201CP. Some of the features of this 10/100Mbit controller are:
- 10/100Mbps operation
- Full/half duplex operation
- Supports auto crossover detection
- Adaptive equalization
- IEEE 802.3/802.3u compliant
- Supports IEEE 802.3u clause 28; 1.8V
- Operation with 3.3V IO signal tolerance
and much more

The Ethernet connector is grounded according to the standard (check GND1 and GND2 lines on the schematics).

If you use Linux then the Ethernet connector might be used for SSH connection to the board. If you lack any other option for debugging it might be hard to guess the correct IP of the board since it has DHCP enabled by default (especially if you are in a large network). It is good idea to check the default settings by exploring the Linux image settings. Those are usually stored in:

/etc/network/interfaces

For DHCP you need to enable auto detection and dhcp as shown below:

```
auto eth0
iface eth0 inet dhcp
```

For setting a static address please follow the pattern below:

```
auto eth0
iface eth0 inet static
address 192.168.1.5
netmask 255.255.255.0
gateway 192.168.1.254
```

The EEPROM memory may be used to store the MAC address.

Important: In some Debian images it is possible that the Ethernet doesn't get auto-detected during boot-up. This is done on purpose because if there is auto-detection enabled and you don't want to use the Ethernet connector or you have forgotten to plug a cable the start-up would be greatly delayed. This might be problem in the first start-up to users counting only on SSH connection. You can enable the Ethernet after a successful boot-up with:

```
ifconfing -a
dhclient eth#(as seen after after the ifconfing command)
```

Important: You can configure static/DHCP-given IP addresses in /etc/network/interfaces
The RJ45 connector has a small yellow and a small built-in LEDs and they are described below:

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>Green</td>
<td>Link status</td>
</tr>
<tr>
<td>Left</td>
<td>Yellow</td>
<td>Activity status</td>
</tr>
</tbody>
</table>
6.7 HDMI connector

The part of the schematic that describes the HDMI module is shown below:

![HDMI schematic](image)

Note that there are different Linux images depending whether the HDMI TV works at 50Hz or 60Hz refresh rate. If your board runs Android there is a specific option to set the appropriate HDMI output.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal name</th>
<th>Processor pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HTX2P</td>
<td>T23</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HTX2N</td>
<td>T22</td>
</tr>
<tr>
<td>4</td>
<td>HTX1P</td>
<td>U23</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HTX1N</td>
<td>U22</td>
</tr>
<tr>
<td>7</td>
<td>HTX0P</td>
<td>U23</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HTX0N</td>
<td>U22</td>
</tr>
<tr>
<td>10</td>
<td>HTXCP</td>
<td>W23</td>
</tr>
</tbody>
</table>

*Pin 14 of the HDMI is not mandatory. In HDMI 1.0-1.3c it is reserved pin; in HDMI 1.4+ it is optional.
6.8 SATA connector and power

The part of the schematic describing the SATA module is shown below:

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal name</th>
<th>Processor pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>SATA-TXP</td>
<td>T20</td>
</tr>
<tr>
<td>3</td>
<td>SATA-TXM</td>
<td>T21</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SATA-RXM</td>
<td>U21</td>
</tr>
<tr>
<td>6</td>
<td>SATA-RXP</td>
<td>U20</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>-</td>
</tr>
</tbody>
</table>

There is a 5V_SATA_PWR connector that is suitable for powering 5V hard-disks through the board. To keep the low form factor we have placed the small JST connector.

You can make an adapter cable accordingly. The other options is to check the SATA-CABLE-SET that we have available.

For more information please visit: https://www.olimex.com/Products/Components/Cables/SATA-CABLE-SET/

Pay note the two jumpers 5V_E_SATA and PC3/PB located at the bottom of the board (under the HDMI connector). The first one 5V_E_SATA is open by default because the board has software control of the powering for the hard disk. If you close 5V_E_SATA there would always be 5V at the 5V_SATA_PWR connector.

Which pin does the software control of the SATA powering is determined by the position of the PC3/PB8 jumper. By default PC3 is used.
6.9 GPIO ports

There are four GPIO ports which are used generally to access unused by the board's peripherals pins. However, there are exceptions – some of the pins might be used to easily peripherals or their levels.

Three of the GPIO connectors have 40 pins and the last one has 20 pins. Note that all GPIO connectors have 0.05" (50 mil) step between pins. Olimex sells a compatible extension cable for these connectors named CABLE-40-40-10CM.

IMPORTANT: the cables and the 0.05" connectors are very fragile – if you attempt to disconnect the setup by pulling the cable it might break! Furthermore – you might bend the board's or the cable's pins! Use pliers or other suitable object to disconnect the connectors carefully!

Most of the pins are already defined in default operating system images. Some of them can be used as GPIOs, I2C or SPI without much of a problem. Information on the software usage of GPIO ports might be found in chapters “2.7 GPIO under Debian” and “2.8 I2C and SPI under Debian”

6.9.1 GPIO-1 (General Purpose Input/Output) 40pin connector

The GPIO-1 connector has 40 pins. Note that the connector has 0.05" (50 mil) step between pins. Olimex also sells a compatible extension cable for the connector named CABLE-40-40-10CM.

IMPORTANT: the cables and the 0.05" connectors are very fragile – if you attempt to disconnect the setup by pulling the cable it might break! Furthermore – you might bend the board's or the cable's pins! Use pliers or other suitable object to disconnect the connectors carefully!

This connector features the processor signals needed for audio headphones output and microphone input. Please note that not only the connectors but also the rest of the schematic is missing! You would need to add resistors and capacitors. The connector also has the signals needed for a VGA output. The official Linux Debian images include a script that can be used to change the video output to VGA. We don't provide Android images for the VGA video output.

Microphone signals are located on GPIO-1 connector: MICIN1 and VMIC

Headphone signals are located on GPIO-1 connector: HPOUTL, HPCOM and HPOUTR

Please note that part of the VGA and composite video signals are multiplexed (VGA-R, VGA-B, VGA-G share the same pins with the TVOUT signals).

Composite video signals are located on GPIO-1 connector: TVOUT0 (GPIO-1 pin 20), TVOUT1 (GPIO-1 pin 22), TVOUT2 (GPIO-1 pin 24); you would also need AGND (GPIO-1 pin 4)

VGA signals are located at GPIO-1 connector and LCD_CON connector: The total of 5 signals you need for VGA output can be split into two categories:

1) Data signals:
 VGA-R (AC17); VGA-B (AB16); VGA-G (AC16)

2) Synchronization signals:
LCD_VSYNC (AC9) and LCD_HSYNC (AB9)

If you inspect the schematics of a board with VGA connector (like A20-OlinuXino-MICRO) carefully you would notice that there are two extra transistors on the synchronization lines. Those are transistors meant to shift the levels to 5V. The 3.3V levels from the processor might work but the standard requires 5V levels of VSYNC and HSYNC. However, if you lead the signals to a 6 pin header (like the one on the A20 board) you might use the cable for the A20-OlinuXino-MICRO (called A20-VGA-CABLE). The 6 signals needed are the 5 signals mentioned about plus GND.

A general advice for easier use of the microphone, headphone and VGA interfaces of A10-OlinuXino-LIME is to take a look at the schematics of another board with those interfaces already installed. For example, those are present in A20-OlinuXino-MICRO. Inspect the schematic carefully.

The signal layout is described below:

<table>
<thead>
<tr>
<th>GPIO-1 connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>39</td>
</tr>
</tbody>
</table>

*Signals marked with * are multiplexed with either a peripheral device or another connector. Ensure that the multiplexing is handled properly on software and/or hardware level (else there would probably occur wrong levels, loss of data, etc).

**Pin #29 is used to control the power supply available at the 5V_SATA_PWR by default.

The light blue boxes represent the pins related to microphone input. The yellow boxes represent pins related to the headphone output. The pale green boxes represent the pins related to alternative video output. There are more located on the LCD connector.
6.9.2 GPIO-2 (General Purpose Input/Output) 40pin connector

The GPIO pins are led out on a separate 40pin connector. They allow the user to attach additional hardware, check readings or perform hardware debug. The GPIO-2 connector numbers are printed at the bottom of the board for your convenience.

<table>
<thead>
<tr>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin#</th>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
<td>-</td>
<td>2</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3.3V</td>
<td>-</td>
<td>4</td>
<td>LDO3_2.8V</td>
<td>Goes to AXP209</td>
</tr>
<tr>
<td>5</td>
<td>TWI0-SCK</td>
<td>A15</td>
<td>6</td>
<td>PE0</td>
<td>E23</td>
</tr>
<tr>
<td>7</td>
<td>TWI0-SDA</td>
<td>B15</td>
<td>8</td>
<td>PE1</td>
<td>E22</td>
</tr>
<tr>
<td>9</td>
<td>PI0</td>
<td>A20</td>
<td>10</td>
<td>PE2</td>
<td>D23</td>
</tr>
<tr>
<td>11</td>
<td>PI1</td>
<td>B20</td>
<td>12</td>
<td>PE3</td>
<td>D22</td>
</tr>
<tr>
<td>13</td>
<td>PI2</td>
<td>A19</td>
<td>14</td>
<td>PE4</td>
<td>C23</td>
</tr>
<tr>
<td>15</td>
<td>PI3</td>
<td>B19</td>
<td>16</td>
<td>PE5</td>
<td>C22</td>
</tr>
<tr>
<td>17</td>
<td>PI10</td>
<td>C17</td>
<td>18</td>
<td>PE6</td>
<td>B23</td>
</tr>
<tr>
<td>19</td>
<td>PI11</td>
<td>D17</td>
<td>20</td>
<td>PE7</td>
<td>B22</td>
</tr>
<tr>
<td>21</td>
<td>PC3/NCE1</td>
<td>L22*</td>
<td>22</td>
<td>PE8</td>
<td>A23</td>
</tr>
<tr>
<td>23</td>
<td>PC7/NRB1</td>
<td>J22*</td>
<td>24</td>
<td>PE9</td>
<td>A22</td>
</tr>
<tr>
<td>25</td>
<td>PC16</td>
<td>M21</td>
<td>26</td>
<td>PE10</td>
<td>B21</td>
</tr>
<tr>
<td>27</td>
<td>PC17</td>
<td>F23</td>
<td>28</td>
<td>PE11</td>
<td>A21</td>
</tr>
<tr>
<td>29</td>
<td>PC18</td>
<td>F22</td>
<td>30</td>
<td>PI21</td>
<td>E13</td>
</tr>
<tr>
<td>31</td>
<td>PC23</td>
<td>G19</td>
<td>32</td>
<td>PI20</td>
<td>E14</td>
</tr>
<tr>
<td>33</td>
<td>PC24/NQS</td>
<td>F21*</td>
<td>34</td>
<td>PI19</td>
<td>D14</td>
</tr>
<tr>
<td>35</td>
<td>GPIO1</td>
<td>-</td>
<td>36</td>
<td>PI18</td>
<td>E15</td>
</tr>
<tr>
<td>37</td>
<td>GPIO2</td>
<td>-</td>
<td>38</td>
<td>PI17</td>
<td>E16</td>
</tr>
<tr>
<td>39</td>
<td>GPIO3</td>
<td>-</td>
<td>40</td>
<td>PI16</td>
<td>E17</td>
</tr>
</tbody>
</table>

 Signals marked with * are multiplexed with either a peripheral device or another connector. Ensure that the multiplexing is handled properly on software and/or hardware level (else there would probably occur wrong levels, loss of data, etc).
6.9.3 GPIO-3 (General Purpose Input/Output) 40pin connector

<table>
<thead>
<tr>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin#</th>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
<td>-</td>
<td>2</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3.3V</td>
<td>-</td>
<td>4</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>RESET_N</td>
<td>C14</td>
<td>6</td>
<td>PB3</td>
<td>B14</td>
</tr>
<tr>
<td>7</td>
<td>PH0</td>
<td>C6</td>
<td>8</td>
<td>PB4</td>
<td>A13</td>
</tr>
<tr>
<td>9</td>
<td>PH7/PB9</td>
<td>B4/C12</td>
<td>10</td>
<td>PB5</td>
<td>B13</td>
</tr>
<tr>
<td>11</td>
<td>PH9</td>
<td>D4</td>
<td>12</td>
<td>PB6</td>
<td>A12</td>
</tr>
<tr>
<td>13</td>
<td>PH10</td>
<td>A3</td>
<td>14</td>
<td>PB7</td>
<td>B12</td>
</tr>
<tr>
<td>15</td>
<td>PH11</td>
<td>B3</td>
<td>16</td>
<td>PB8/SATA-PWR-EN</td>
<td>A11</td>
</tr>
<tr>
<td>17</td>
<td>PH12</td>
<td>C3</td>
<td>18</td>
<td>PB10</td>
<td>C11</td>
</tr>
<tr>
<td>19</td>
<td>PH13</td>
<td>A2</td>
<td>20</td>
<td>PB11</td>
<td>C10</td>
</tr>
<tr>
<td>21</td>
<td>PH14</td>
<td>B2</td>
<td>22</td>
<td>PB12</td>
<td>C9</td>
</tr>
<tr>
<td>23</td>
<td>PH15</td>
<td>A1</td>
<td>24</td>
<td>PB13</td>
<td>B11</td>
</tr>
<tr>
<td>25</td>
<td>PH16</td>
<td>B1</td>
<td>26</td>
<td>PB14</td>
<td>A10</td>
</tr>
<tr>
<td>27</td>
<td>PH17</td>
<td>C1</td>
<td>28</td>
<td>PB15</td>
<td>B10</td>
</tr>
<tr>
<td>29</td>
<td>PH18</td>
<td>C2</td>
<td>30</td>
<td>PB16</td>
<td>A9</td>
</tr>
<tr>
<td>31</td>
<td>PH19</td>
<td>D1</td>
<td>32</td>
<td>PB17</td>
<td>B9</td>
</tr>
<tr>
<td>33</td>
<td>PH20</td>
<td>D2</td>
<td>34</td>
<td>PH24</td>
<td>E3</td>
</tr>
<tr>
<td>35</td>
<td>PH21</td>
<td>D3</td>
<td>36</td>
<td>PH25</td>
<td>E4</td>
</tr>
<tr>
<td>37</td>
<td>PH22</td>
<td>E1</td>
<td>38</td>
<td>PH26</td>
<td>F3</td>
</tr>
<tr>
<td>39</td>
<td>PH23</td>
<td>E2</td>
<td>40</td>
<td>PH27</td>
<td>F4</td>
</tr>
</tbody>
</table>

6.9.4 GPIO-4 (General Purpose Input/Output) 20pin connector

GPIO-4 connector features the rest of the signals available and few additional signals that might need testing.

<table>
<thead>
<tr>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin#</th>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3V</td>
<td>-</td>
<td>2</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>TVOUT3</td>
<td>AB17</td>
<td>4</td>
<td>NMI_N</td>
<td>F5</td>
</tr>
<tr>
<td>5</td>
<td>TVIN0</td>
<td>AC18</td>
<td>6</td>
<td>MIC1OUTP</td>
<td>AC22</td>
</tr>
<tr>
<td>7</td>
<td>TVIN1</td>
<td>AB18</td>
<td>8</td>
<td>MIC1OUTN</td>
<td>AC23</td>
</tr>
<tr>
<td>9</td>
<td>TVIN2</td>
<td>AA17</td>
<td>10</td>
<td>MICIN2</td>
<td>AC21</td>
</tr>
<tr>
<td>11</td>
<td>TVIN3</td>
<td>Y17</td>
<td>12</td>
<td>GPIO2</td>
<td>Goes to AXP209</td>
</tr>
<tr>
<td>13</td>
<td>LINEINR</td>
<td>AB21</td>
<td>14</td>
<td>GPIO3</td>
<td>Goes to AXP209</td>
</tr>
<tr>
<td>15</td>
<td>LINEINL</td>
<td>AB20</td>
<td>16</td>
<td>PC7</td>
<td>J22</td>
</tr>
<tr>
<td>17</td>
<td>FMINR</td>
<td>Y21</td>
<td>18</td>
<td>PC16/NWP</td>
<td>M21*</td>
</tr>
<tr>
<td>19</td>
<td>FMINL</td>
<td>Y20</td>
<td>20</td>
<td>PC17</td>
<td>F23</td>
</tr>
</tbody>
</table>

Signals marked with * are multiplexed with either a peripheral device or another connector. Ensure that the multiplexing is handled properly on software and/or hardware level (else there would probably occur wrong levels, loss of data, etc).
6.10 LCD_CON 40pin connector

The LCD_CON pins are led out on a separate 40pin connector for the ease of connecting an LCD. We have tested the ability of the board to interact with such a display. They allow the user to attach additional hardware, check readings or perform hardware debug.

Important: you need additional 40PIN ribbon cable to connect an Olimex display and the LCD_CON.

The LCD connector is suitable for a number of Olimex displays and touchscreen panels with different native resolution – the smallest available is the 4.3'' one called LCD-OLinuXino-4.3TS with native screen resolution of 480×272, through the 7'' one named LCD-OLinuXino-7TS with 800×480, to the 1024×600 10.1'' LCD-OLinuXino-10TS.

<table>
<thead>
<tr>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin</th>
<th>GPIO pin#</th>
<th>Signal name</th>
<th>Processor pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>-</td>
<td>2</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+3.3V</td>
<td>-</td>
<td>4</td>
<td>GND</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>LCD_D16</td>
<td>Y12</td>
<td>6</td>
<td>LCD_D17</td>
<td>AA12</td>
</tr>
<tr>
<td>7</td>
<td>LCD_D18</td>
<td>Y11</td>
<td>8</td>
<td>LCD_D19</td>
<td>AA11</td>
</tr>
<tr>
<td>9</td>
<td>LCD_D20</td>
<td>Y10</td>
<td>10</td>
<td>LCD_D21</td>
<td>AA10</td>
</tr>
<tr>
<td>11</td>
<td>LCD_D22</td>
<td>AB12</td>
<td>12</td>
<td>LCD_D23</td>
<td>AC10</td>
</tr>
<tr>
<td>13</td>
<td>LCD_D8</td>
<td>AB11</td>
<td>14</td>
<td>LCD_D9</td>
<td>AC11</td>
</tr>
<tr>
<td>15</td>
<td>LCD_D10</td>
<td>Y15</td>
<td>16</td>
<td>LCD_D11</td>
<td>AA15</td>
</tr>
<tr>
<td>17</td>
<td>LCD_D12</td>
<td>Y14</td>
<td>18</td>
<td>LCD_D13</td>
<td>AA14</td>
</tr>
<tr>
<td>19</td>
<td>LCD_D14</td>
<td>Y13</td>
<td>20</td>
<td>LCD_D15</td>
<td>AA13</td>
</tr>
<tr>
<td>21</td>
<td>LCD_D0</td>
<td>AB15</td>
<td>22</td>
<td>LCD_D1</td>
<td>AC15</td>
</tr>
<tr>
<td>23</td>
<td>LCD_D2</td>
<td>AB14</td>
<td>24</td>
<td>LCD_D3</td>
<td>AC14</td>
</tr>
<tr>
<td>25</td>
<td>LCD_D4</td>
<td>AB13</td>
<td>26</td>
<td>LCD_D5</td>
<td>AC13</td>
</tr>
<tr>
<td>27</td>
<td>LCD_D6</td>
<td>AB12</td>
<td>28</td>
<td>LCD_D7</td>
<td>AC12</td>
</tr>
<tr>
<td>29</td>
<td>LCD_HSYNC</td>
<td>AB9</td>
<td>30</td>
<td>LCD_VSYNC</td>
<td>AC9</td>
</tr>
<tr>
<td>31</td>
<td>LCD_CLK</td>
<td>Y9</td>
<td>32</td>
<td>LCD_DE</td>
<td>AA9</td>
</tr>
<tr>
<td>33</td>
<td>PB3</td>
<td>B14</td>
<td>34</td>
<td>PB4</td>
<td>A13</td>
</tr>
<tr>
<td>35</td>
<td>LCD_PWR</td>
<td>C4</td>
<td>36</td>
<td>PB2/PWM0</td>
<td>A14*</td>
</tr>
<tr>
<td>37</td>
<td>TPX1</td>
<td>Y22</td>
<td>38</td>
<td>TPX2</td>
<td>AA22</td>
</tr>
<tr>
<td>39</td>
<td>TPY1</td>
<td>Y23</td>
<td>40</td>
<td>TPY2</td>
<td>AA23</td>
</tr>
</tbody>
</table>

Signals marked with * are multiplexed with either a peripheral device or another connector. Ensure that the multiplexing is handled properly on software and/or hardware level (else there would probably occur wrong levels, loss of data, etc).

IMPORTANT:

To use Android with display or resolution different than HDMI and 1024×600 (default settings) you need to upload new Android image to the board. These images are available here: https://www.olimex.com/wiki/A10-OLinuXino-LIME (using an operating system – NAND flash).

In Debian Linux you would need to start a script to change the built-in the image resolution settings. Start it with ./change_display_a10_lime.sh and follow the instructions. Please refer to chapter 2.5 “Changing the default image resolution” for more information.
6.11 Jumper description

Please note that most the jumpers on the board are SMT type. If you feel insecure of your soldering/cutting technique it is better not to try to adjust the jumpers since it is possible to damage the board.

<table>
<thead>
<tr>
<th>Jumper name</th>
<th>Type</th>
<th>Default position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAND_E</td>
<td>SMT</td>
<td>Either CLOSED or OPEN, depending whether the board has 4GB NAND MEMORY MODULE</td>
<td>Controls whether the NAND memory module is enabled or disabled. If the jumper is closed than the NAND memory is operational.</td>
</tr>
<tr>
<td>PC3/PB8</td>
<td>SMT</td>
<td>PC3</td>
<td>Controls which processor pin should be used for SATA power enabling signal. By default the SATA powering control uses processor pin L22 which is port PC3. Changing this jumper also changes the availability of PC3 and PB8 at GPIO-1 pin 29 and GPIO-3 pin 16. Please note that if you change the position of the jumper from PC3 to PB8 then you might block one of the processor pins responsible for I2S and AC97 audio output.</td>
</tr>
<tr>
<td>PB9/PH7_USB</td>
<td>SMT</td>
<td>PB9</td>
<td>Controls which processor pin should be used for the USB_OTG. By default the USB_OTG uses processor pin C12 which is port PB9. The same pin/port is used for I2S audio. In case you want to access the I2S capabilities of the board you would need to change the default position.</td>
</tr>
<tr>
<td>PB9/PH7_GPIO</td>
<td>SMT</td>
<td>PH7_GPIO</td>
<td>PB9/PH7_GPIO jumper controls which of the two ports (PB9 or PH7) should be lead out to pin 9 of GPIO3 connector for easier access. Changing this jumper also changes the signal available at GPIO-3 connector's pin 9. By default this jumper is in PH7_GPIO position and PH7 is lead to pin 9 of GPIO3.</td>
</tr>
</tbody>
</table>
6.12 Additional hardware components

The components below are mounted on OLinuXino but are not discussed above. They are listed here for completeness:

Reset button – used to reset the board
Power button – used to reset the board
Recovery button – used to reset the board

512MB = 1× [4Gb (256M x 16bit)] DDR3 SDRAM – the exact memory used currently in the board is SAMSUNG K4B4G1646D-BCK0

The DDR3 memory part name in the schematic might be outdated. We have used a number of different but fully compatible DDR3 memories due to supply unavailability. It is always recommended to check the exact memory name printed on the component itself.

4GB = 1× [32Gb (4096M x 8 bit)] NAND FLASH – only available on the 4GB version of the board; the exact memory used in the board revision mentioned is Hynix H27UBG8T2A

PWR_LED – turns on upon powering the board

CHGLED – lights when charging a battery connected to the Li-Po battery connector.
CHAPTER 7: SCHEMATICS

7. Introduction to the chapter

In this chapter is located information about the schematics describing logically and physically A10-OLinuXino-LIME.

7.1 Eagle schematic

OLinuXino schematics may be found it on the OLinuXino's GitHub repository: https://github.com/OLIMEX/OLINUXINO/tree/master/HARDWARE/A10-OLinuXino-LIME. You can download the whole repository as .zip without having a GitHub account.

Please note that the schematics of A20-OlinuXino-LIME and A10-OlinuXino-LIME are similar and it is possible that a single board file and schematic for both boards exist.

We mostly use Eagle by Cad Soft 4.16r2 for designing. However, the files should be compatible with the latest Eagle available. Cad Soft offers a trial version of their software that allows you to inspect schematics and board files (without being able to modify them).

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

If you are looking for a schematic of an older revision of the board and it isn't available at our web site you may request it by the support e-mail.
7.2 Physical dimensions

Note that all dimensions are in mils.
CHAPTER 8: REVISION HISTORY AND SUPPORT

8. Introduction to the chapter

In this chapter you will find the current and the previous version of the document you are reading. Also the web-page for your device is listed. Be sure to check it after a purchase for the latest available updates and examples.

8.1 Document revision

<table>
<thead>
<tr>
<th>Document revision</th>
<th>Changes</th>
<th>Modified page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, 30.05.14</td>
<td>Initial manual release</td>
<td>All</td>
</tr>
<tr>
<td>B, 26.08.14</td>
<td>Audio interface information; Replaced misleading suggested 12V power supplies with 5V ones</td>
<td>28, 9, 37</td>
</tr>
<tr>
<td>C, 27.08.14</td>
<td>Clarified few important points in the features;</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Expanded the text which details the limits of the software support;</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Added instructions on NAND image upload</td>
<td>26</td>
</tr>
<tr>
<td>D, 07.10.14</td>
<td>Fixed the information about VGA output; added information about composite video</td>
<td>30, 33</td>
</tr>
<tr>
<td>E, 27.10.14</td>
<td>Improved the VGA output information</td>
<td>12, 30</td>
</tr>
<tr>
<td>F, 03.11.14</td>
<td>Added GPIO, I2C and SPI sections</td>
<td>13, 14, 30, 31, 32, 33</td>
</tr>
<tr>
<td></td>
<td>Fixed few spelling mistakes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed power jack information</td>
<td></td>
</tr>
<tr>
<td>G, 27.02.2015</td>
<td>Various formatting improvements</td>
<td>-</td>
</tr>
<tr>
<td>H, 17.03.2015</td>
<td>Updated HDMI part according to latest schematics</td>
<td>29, 37</td>
</tr>
<tr>
<td></td>
<td>Updated DDR3 memory</td>
<td></td>
</tr>
<tr>
<td>I, 23.12.2015</td>
<td>Clarified that we no longer load Android on the 4GB version of the board</td>
<td>All</td>
</tr>
</tbody>
</table>
8.2 Board revision

Remember to check the schematics and the board design files to compare the differences.

<table>
<thead>
<tr>
<th>Board revision</th>
<th>Notable changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Initial release of the board</td>
</tr>
<tr>
<td>B</td>
<td>R12, R13 (ODT, RST) resistors are now mounted (were NA before) with 0R value otherwise the board doesn't start.</td>
</tr>
</tbody>
</table>
| C | 1. PC3/PB1 is now properly labeled as PC3/PB8 both on the schematic and the print
2. Added R73 – 10M in parallel to the 32768 crystal
3. Added 2 FET transistors and MCP130 for switching directly external +5V without voltage drop
4. USBDRV0 goes through 3 pin SMD jumper(PB9/PH7) for compatibility
5. GPIO3(pin9) comes from the 3 pin jumper PH7/PB9 for compatibility
6. 10k resistors package changed from 0603 to 0402
7. The NAND is moved a bit so there is lower chance of short-circuit
8. Added a NA resistor between PC16/NWP of the processor and 19 pin #WP of the NAND
9. Added R77 pull down for MCP130 |
8.3 Useful web links and purchase codes

The web page you can visit for more information about your device are:

Product page: https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME/
Wiki article of the board: https://www.olimex.com/wiki/A10-OLinuXino-LIME
A place for general questions, FAQ or friendly talk: https://www.olimex.com/forum/
You can get the latest updates on the software at: https://github.com/OLIMEX/OLINUXINO
You may may join our IRC channel #olimex @ freenode.net (http://webchat.freenode.net/?channels=olimex).

The eewiki might be especially helpful: http://eewiki.net/display/linuxonarm/A10-OlinuXino-LIME.
The sunxi community is behind the Allwinner Linux support: http://linux-sunxi.org/Main_Page.

ORDER CODES:

A10-OLinuXino-LIME – the product for which this manual is about

- **USB-SERIAL-CABLE-F** – USB serial console cable female
- **USB-MINI-CABLE** – standard USB type A to USB type mini cable
- **SY0605E** – reliable power supply adapter 50Hz (EU) 5V/1A for A10-OLinuXino-LIME
- **SY0605E-CHINA** – cheaper power supply adapter 50Hz (EU) 5V/1A for A10-OLinuXino-LIME
- **A10-ANDROID-SD** – a tested class 10 micro SD card with the latest (by the time of leaving the Olimex facilities) official Android release
- **A10-DEBIAN-SD** – a tested class 10 micro SD card with the latest (by the time of leaving Olimex facilities) official Debian Linux release
- **A10-OLinuXino-LIME-UEXT** – an adapter from 0.05'' step connector to 0.1'' step one; also suitable for LCD adapting
- **CABLE-40-40-10CM** – 0.05'' step cable for connecting a new display to the board
- **LCD-OLINUXINO-4.3TS** – low-cost 4.3'' LCD display with touchscreen component – 480×272
- **LCD-OLINUXINO-7TS** – low-cost 7'' LCD display with optional touchscreen component – 800×480
- **LCD-OLINUXINO-10TS** – low-cost 10'' LCD display with optional touchscreen component – 1024×600
- **CABLE-IDC40-15cm** – 0.1'' step cable for connecting an LCD to A10-OLinuXino-LIME-UEXT

How to purchase?

You can purchase directly from our online shop or from any of our distributors. Note that usually it is faster and cheaper to purchase Olimex products from our distributors. List of confirmed Olimex LTD distributors and resellers: https://www.olimex.com/Distributors.

Please visit https://www.olimex.com/ for more info.
8.4 Frequently asked questions

Q: I power my board, it shows a logo and then nothing happens.
A: This might be due to a number of reasons but it is recommended to try the following:

1. Download latest official image from our wiki (either Android or Debian for SD card), and upload it to an SD card again. There are instructions how to do it in the other questions below. Try if the board works now.

2. Check if your power supply provides enough current, try with different/better power supply.

3. Check the USB hub you are using, plug the USB cable directly to the back of your personal computer, check the USB cable.

4. The board might enter sleep mode very fast (especially if the Android was turned off without the “Quick Boot” mode being ticked on). Try pressing or holding down the PWR button for a couple of seconds to wake it up.

Q: How do I write the Linux image to a micro SD card to use with my A10 board?
A: To write a Linux image to an SD card under Windows we use Win32 Disk Imager:

Download Win32 Disk Imager software
Insert card
Start program
Select file
Click "write"

To write a Linux image to an SD card under Linux:

For instance you have an image with the file name of "debian_2g.img". It would be downloaded to the SD card connected to a Linux machine using one of the following commands:

```
# dd bs=4M oflag=sync if=debian_2g.img of=/dev/sdX
or

# cp debian_2g.img /dev/sdX
```

where X is the uSD card.

Q: How to detect and enable the Ethernet controller (if it is disabled by default)?
A: You can enable it by following these two steps:

1. To check under what name the LAN is associated write "ifconfig –a"

2. If, for example, it is under eth0 name, then write: "dhclient eth0"

This should enable the Ethernet and then SSH would also be available.
You can also enable auto detection of Ethernet on power-up by removing the comment #auto eth0 in /etc/network/interfaces in the Linux image.

Q: How to generate boot-able SD-card Debian Linux image for A10-OLinuXino?

Note that Linux-Sunxi Kernel is a work-in-progress, this means you can try the current stage branch but if something is broken and doesn't work just revert to the git tags we give in the blog and they should work for sure.

Q: How to install Android on an SD-card?

Two images are built – one for 7” LCD and one for 10” LCD https://www.olimex.com/wiki/A10-OLinuXino-LIME

To write the images on the SD card you will need a software tool called PhoenixSuit and then:

- Install and run PhoenixSuit.
- Go to the firmware tab of the program and point to a valid Android image (note that the images on Gdrive are compressed and you have to extract the archives to .img files to be able write them with PhoenixSuit)
- Disconnect the power supply and USB cable from the A10 board. Put an SD card in micro SD holder. We recommend 4GB class 10 card.
- Press and hold RECOVERY button, apply power supply 5V, release RECOVERY button.
- Connect USB cable to the mini USB connector.
- You will be asked for drivers for the boot-loader. Navigate to the folder where you extracted the PhoenixSuit and install the drivers from the respective executables (or manually point the installer to the drivers folder in the PhoenixSuit installation path).
- PhoenixSuit will detect the board and would ask for the method of writing the image. Choose method of writing the image and confirm your wish to write the image.
- Wait till upgrade succeeds

Note that it is not recommended to have your mini USB connected to an external USB hub. This might cause delays and might distort the signal levels. Always test with the USB connected straight to the USB ports of your computer.

Important: When Android runs for very first time it takes several minutes to initialize all files and buffers please do not cut the power supply during this process! Also when fresh image is installed fast boot may be disabled, which means that when you apply power supply after few seconds Android will go in sleep mode and you have to press PWR button to start it, you can change to fast boot when you power off there is dialog box asking you if you want next boot to be fast boot, you have to check this box before you power off. Also note that you must do touch screen calibration when you run Android for very first time which might require a mouse.

Q: Is it possible to boot Linux from the NAND memory?

A: Yes, it is possible. Customers have been successful in booting from the NAND. At the time of writing this document, Olimex does not provide a suitable image, however. It would be up to you to do it.
Q: I have a 4GB version of the board. The board doesn't seem to have Android loaded.
A: We no longer load Android on the NAND memory of the boards. You can upload Android following the advice above in this document.
8.5 Product support

For product support, hardware information and error reports mail to: support@olimex.com. All document or hardware feedback is welcome. Note that we are primarily a hardware company and our software support is limited. Please consider reading the paragraph below about the warranty of Olimex products.

All goods are checked before they are sent out. In the unlikely event that goods are faulty, they must be returned, to OLIMEX at the address listed on your order invoice. OLIMEX will not accept goods that have clearly been used more than the amount needed to evaluate their functionality.

If the goods are found to be in working condition, and the lack of functionality is a result of lack of knowledge on the customers part, no refund will be made, but the goods will be returned to the user at their expense.

All returns must be authorized by an RMA Number. Email support@olimex.com for authorization number before shipping back any merchandise. Please include your name, phone number and order number in your email request.

Returns for any unaffected development board, programmer, tools, and cables permitted within 7 days from the date of receipt of merchandise. After such time, all sales are considered final.

Returns of incorrect ordered items are allowed subject to a 10% restocking fee. What is unaffected? If you hooked it to power, you affected it. To be clear, this includes items that have been soldered to, or have had their firmware changed. Because of the nature of the products we deal with (prototyping electronic tools) we cannot allow returns of items that have been programmed, powered up, or otherwise changed post shipment from our warehouse.

All returned merchandise must be in its original mint and clean condition. Returns on damaged, scratched, programmed, burnt, or otherwise 'played with' merchandise will not be accepted.

All returns must include all the factory accessories which come with the item. This includes any In-Circuit-Serial-Programming cables, anti-static packing, boxes, etc.

With your return, enclose your PO#. Also include a brief letter of explanation of why the merchandise is being returned and state your request for either a refund or an exchange. Include the authorization number on this letter, and on the outside of the shipping box.

Please note: It is your responsibility to ensure that returned goods reach us. Please use a reliable form of shipping. If we do not receive your package we will not be held liable.

Shipping and handling charges are not refundable. We are not responsible for any shipping charges of merchandise being returned to us or returning working items to you.

The full text might be found at https://www.olimex.com/wiki/GTC#Warranty for future reference.