# PRELIMINARY SPECIFICATION FOR LCD MODULE

**ORDER NO: CL010-4042-01** 

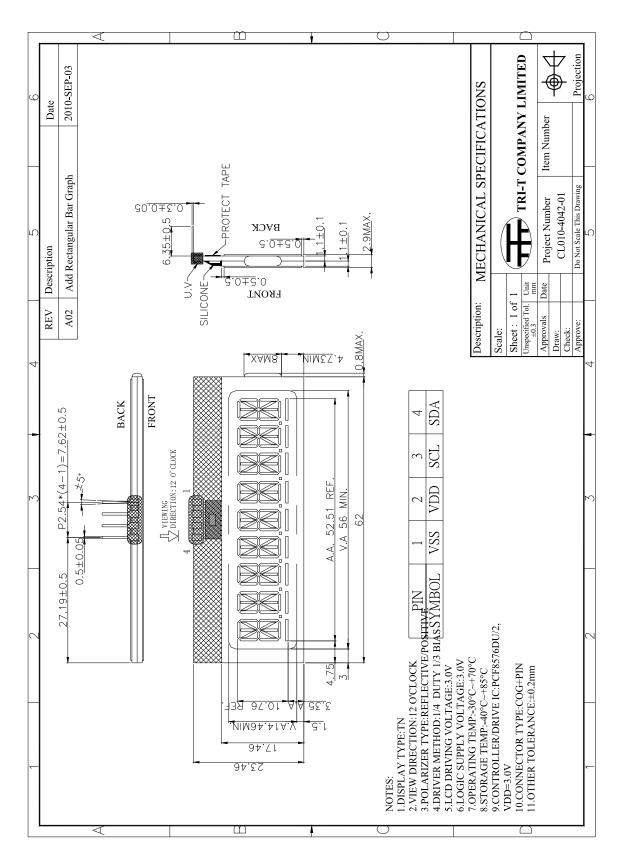
MODULE NO.: CL010-4042-E-RH

**DOC.REVISION A00** 

| Customer Approval: |  |  |
|--------------------|--|--|
|                    |  |  |
|                    |  |  |
|                    |  |  |
|                    |  |  |
|                    |  |  |
|                    |  |  |
|                    |  |  |
|                    |  |  |
|                    |  |  |

|             | NAME          | SIGNATURE | DATE        |
|-------------|---------------|-----------|-------------|
| PREPARED BY | KOWK SHING FU |           | 16 SEP 2010 |
| CHECKED BY  | FU SZE HOI    |           | 17 SEP 2010 |
| APPROVED BY | FU SZE HOI    |           | 17 SEP 2010 |




# **DOCUMENT REVISION HISTORY**

| Version | DATE        | DESCRIPTION | CHANGED BY |
|---------|-------------|-------------|------------|
| A00     | 16 SEP 2010 | First issue |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |
|         |             |             |            |

| Dimensional Outline               | 1       |
|-----------------------------------|---------|
| Functions & Features              | 2       |
| Mechanical Specifications         | 2       |
| Block Diagram                     | 3       |
| Pin Description                   | 3       |
| Maximum Absolute Limit            | 4       |
| <b>Electrical Characteristics</b> | 4, 5, 6 |
| LCD Mapping Specifications        | 7       |
| <b>Ouality Specifications</b>     | 8~16    |



# 1. <u>DIMENSIONAL OUTLINE</u>





# **2.FUNCTIONS & FEATURES**

2-1. Format : 14 segment digits + Symbols

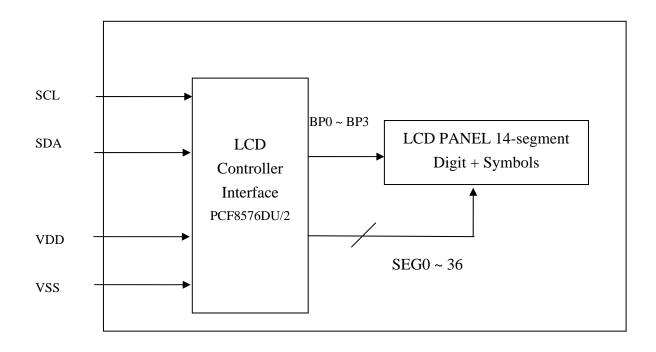
2-2. LCD Mode : TN, Positive, Reflective

2-3. Viewing Direction : 12 o'clock

2-4. Driving Scheme : 1/4 duty, 1/3 Bias

2-5. Single Supply Voltage : Power supply voltage range ( $V_{DD}$ ): 3.0V

2-7. With Metal Pin connector


# **3.MECHANICAL SPECIFICATIONS**

3-1. Module size : 62.00mm(L) \* 23.46mm(W) \* 2.9mm(D) max

3-2. Viewing area : 52.51mm(L) \* 10.76mm(W)



# **4.BLOCK DIAGRAM**



# **5. PIN DESCRIPTION**

| 1 | VSS | Power Supply Ground (0V)   |
|---|-----|----------------------------|
| 2 | VDD | Power Supply (+3.0V)       |
| 3 | SCL | I2C serial clock input pin |
| 4 | SDA | I2C serial data input pin  |



# 6.MAXIMUM ABSOUTE LIMIT (T=25°C)

| Item                           | Symbol          | Standard value                   | Unit |
|--------------------------------|-----------------|----------------------------------|------|
| Power supply voltage for logic | $V_{ m DD}$     | -0.5~+6.5                        | V    |
| Input voltage                  | V <sub>IN</sub> | $V_{SS} + 0.5 \sim V_{DD} + 0.5$ | V    |
| Operating temperature          | Topr            | -30~+70                          | °C   |
| Storage temperature            | Tstg            | -40~+85                          | °C   |

Note: Voltage greater than above may damage the module

# **7.ELECTRICAL CHARACTERISTICS**

## 7-1.DC Characteristics ( $V_{DD}$ =1.8V ~ 5.5V ,Ta=-40~+85°C)

| Symbol            | Parameter                    | Min                   | Тур | Max         | Unit | Test condition                      |
|-------------------|------------------------------|-----------------------|-----|-------------|------|-------------------------------------|
| $V_{DD}$          | Logic Circuit supply voltage | 2.9                   | 3.0 | 3.1         | V    | Recommend operating voltage         |
| $I_{DD}$          | Current Consumption          | -                     | 0.2 | 0.5         | mA   | VLCD=VSS                            |
| $V_{OH}$          | High level output voltage    | V <sub>DD</sub> -0.05 | -   | -           | V    | IOH=0 mA                            |
| $V_{OL}$          | Low level output voltage     | -                     | -   | 0.05        | V    | IOH=0mA                             |
| $V_{\mathrm{IH}}$ | High level input voltage     | $0.7V_{DD}$           | -   | $V_{DD}$    | V    |                                     |
| $V_{\rm IL}$      | Low level input voltage      | $V_{SS}$              | -   | $0.3V_{DD}$ | V    |                                     |
| $I_{OH}$          | High level output current    | -1                    | -   | -           | mA   | VOH=4V, VDD=5V                      |
| $I_{OL}$          | Low level output current     | 3                     | -   | -           | mA   | VOH=4V, VDD=5V                      |
| $I_{ILI}$         | Leakage current              | -1                    |     | 1           | uA   | V=VDD or VSS                        |
| $C_{I}$           | Input capacitance            | -                     | -   | 7           | pF   |                                     |
| $V_{LCD}$         | LCD driving voltage          |                       | 3.0 |             | V    | $V_{LCD}$ – VSS, Ta=25 $^{\circ}$ C |



### **7-2.AC Characteristics** (VDD = 1.8 to 5.5 V; Vss = 0 V; $Tamb = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$ )

| SYMBOL        | PARAMETER                                  | CONDITIONS         | MIN. | TYP. | MAX. | UNIT |
|---------------|--------------------------------------------|--------------------|------|------|------|------|
| fclk          | oscillator frequency                       | note 1             | 960  | 1890 | 2640 | Hz   |
| tclkH         | input CLK HIGH time                        |                    | 60   | -    | -    | μs   |
| tclkl         | input CLK LOW time                         |                    | 60   | -    | -    | μs   |
| tpd(sync)     | SYNC propagation delay                     |                    | -    | 30   | -    | ns   |
| tsyncl        | SYNC LOW time                              |                    | 1    | -    | -    | μs   |
| tPD(LCD)      | driver delays with test loads              | VLCD = 5 V; note 2 | -    | -    | 30   | μs   |
| Timing ch     | aracteristics: I2C-bus; note 3             |                    |      |      |      |      |
| fscL          | SCL clock frequency                        |                    | -    | -    | 400  | kHz  |
| <b>t</b> BUF  | bus free time between a STOP and START     |                    | 1.3  | -    | -    | μs   |
| thd;sta       | START condition hold time                  |                    | 0.6  | -    | -    | μs   |
| tsu;sta       | set-up time for a repeated START condition |                    | 0.6  | -    | -    | μs   |
| tLOW          | SCL LOW time                               |                    | 1.3  | -    | -    | μs   |
| <b>t</b> HIGH | SCL HIGH time                              |                    | 0.6  | -    | -    | μs   |
| tr            | SCL and SDA rise time                      | fscl = 400 kHz     | -    | -    | 0.3  | μs   |
|               |                                            | fscL < 125 kHz     | -    | -    | 1.0  | μs   |
| tf            | SCL and SDA fall time                      |                    | -    | -    | 0.3  | μs   |
| Св            | capacitive bus line load                   |                    | -    | -    | 400  | pF   |
| tsu;dat       | data set-up time                           |                    | 100  | -    | -    | ns   |
| thd;dat       | data hold time                             |                    | 0    | _    | -    | ns   |
| tsu;sto       | set-up time for STOP condition             |                    | 0.6  | -    | -    | μs   |
| tsw           | tolerable spike width on bus               |                    | -    | -    | 50   | ns   |

### Notes

- 1 Typical output duty factor: 50% measured at the CLK output pin.
- 2 Not tested in production.
- 3 All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V<sub>IL</sub> and V<sub>IH</sub> with an input voltage swing of V<sub>SS</sub> to V<sub>DD</sub>.



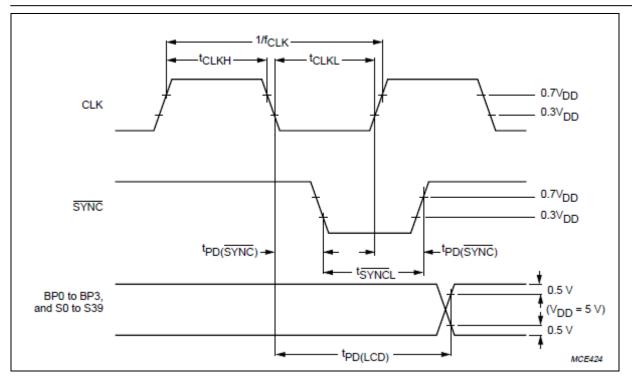



Fig. 1 Driver timing waveforms.

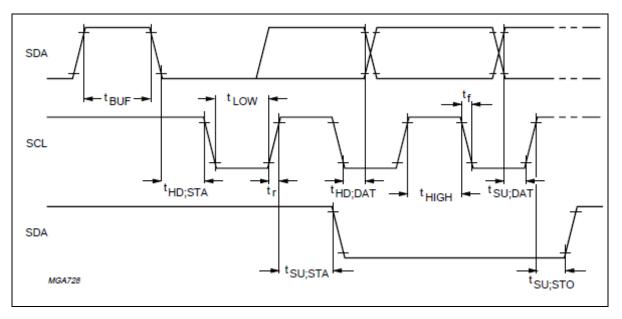
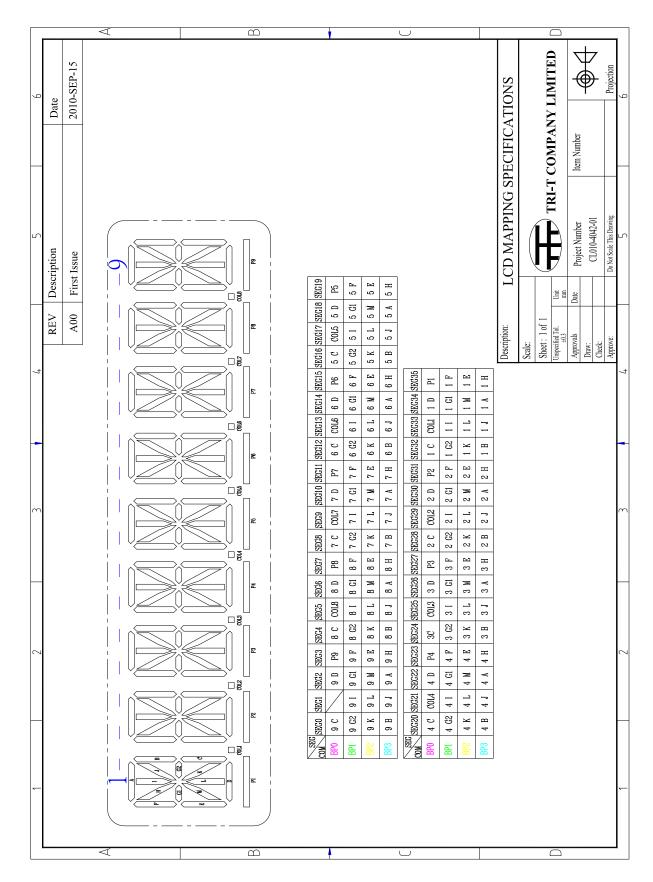
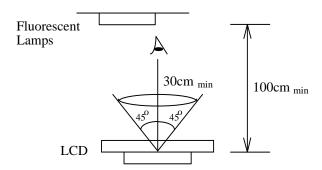




Fig. 2 I<sup>2</sup>C-bus timing waveforms.

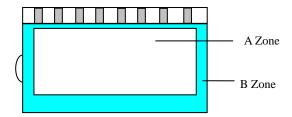


# **8.0 LCD MAPPING SPECIFICATIONS**






## 9. QUALITY SPECIFICATIONS


### 9.1 Inspection Condition

9.1.1 The inspection shall be performed by using  $20W \times 2$  fluorescent lamps . Distance between LCD and fluorescent lamps should be 100 cm or more. Distance between LCD and inspector eyes should be 30 cm or more.



- 9.1.2 For transmissive displays a reflector (e.g. a white card) shall be placed behind the display.
- 9.1.3 Viewing direction for inspection is 45° from vertical against LCD.

### 9.2. Definition of Zone



A Zone: Active display area (minimum viewing area).B Zone: Non-active display area (outside viewing area).



# 9.3 Sampling Method: MIL-STD-105E.

# 9.4 Inspection level: Level II, Single Sampling.

| Rank  |                      | Item                                                                                                                        | Criterion | AQL   |
|-------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------|
|       | 1.Display state      | <ol> <li>Segment short circuit.</li> <li>Open circuit (missing segment)</li> <li>Contrast defect (dim, ghosting)</li> </ol> | 1         | 0.4   |
|       |                      | 4. Segment defect (Pin hole, etc.)                                                                                          | 6         |       |
| Major |                      | 5. Leakage                                                                                                                  | ,         | Ac:0  |
|       |                      | 6. No display, polarizers reverse applied                                                                                   | /         | Re: 1 |
|       | 2. Dimension         | Dimension out of specification (incl. PIN)                                                                                  | 2         | 0.4   |
|       | 1. Non-display state | <ol> <li>Spot, foreign material, line defect</li> <li>Rainbow, background color</li> </ol>                                  | 3, 4, 5   |       |
| Minor | 2. Polarizer         | <ol> <li>Scratch</li> <li>Bubble</li> <li>Foreign material</li> </ol>                                                       | 3, 4, 7   |       |
|       |                      | 4. Poor fixed position                                                                                                      | 8         |       |
|       | 3. Glass             | 1. Chipped                                                                                                                  | 9         | 1.0   |
|       | substrate            | 2. Protruded, burred                                                                                                        | 10        |       |
|       | 4. PIN               | <ol> <li>Positioning</li> <li>Epoxy coverage</li> </ol>                                                                     | 11        |       |
|       | 5. Silk screen       | <ol> <li>Positioning</li> <li>Color</li> </ol>                                                                              | 12        |       |
|       |                      | 3. Semblance defect (Refer spot, line Standards)                                                                            | 3, 4      |       |
| Total |                      |                                                                                                                             |           | 1.0   |



# 9.5 Inspection Items and Standards

| No | Item                                                                       | Criterion                                                                                                                                                                                                                        |  |  |  |  |
|----|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1  | Segment short, missing                                                     | Not exist                                                                                                                                                                                                                        |  |  |  |  |
|    | Contrast defect                                                            | Refer to approved sample                                                                                                                                                                                                         |  |  |  |  |
| 2  | Outside defect > Positioning Color                                         | Not exceed tolerance<br>Refer to approved sample                                                                                                                                                                                 |  |  |  |  |
| 3  | Point defect,<br>Black spot, dust<br>(incl. Polarizer)<br>$\phi = (X+Y)/2$ | Point Acceptable Qty.  Size $ \phi \leq 0.10 \qquad \text{Not count} $ $ 0.10 < \phi \leqslant 0.20 \qquad 1 $ $ 0.20 < \phi \leqslant 0.25 \qquad 2 $ $ 0.25 < \phi \leqslant 0.30 \qquad 1 $ $ \phi > 0.30 \qquad 0 $ Unit: mm |  |  |  |  |
| 4  | Line defect                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                            |  |  |  |  |
| 5  | Rainbow                                                                    | Not more than two color changes across the viewing area.  Background color should refer to approved sample.                                                                                                                      |  |  |  |  |
| 6  | Segment pattern $W = Segment \ width$ $\phi = (A+B)/2$                     | 1. Pin hole $\phi < 0.10 mm \text{ is acceptable.}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                        |  |  |  |  |



| No | Item                    | Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |                         | 2. Segment width acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|    |                         | $ A - B  < 0.20;$ $D \le 0.2$ $C \le 0.1$ $E \le 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|    |                         | $\begin{array}{c c} & & & & \downarrow \\ \hline \\ \hline \\ \hline \\ & \downarrow \\ \hline \\$ |  |  |  |  |
|    |                         | 3. Dot pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|    |                         | Size Acceptable Qty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|    |                         | Y φ>0.20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    |                         | C: Shall not touch other dot(s) Unit: mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 7  | Polarizer air bubble    | Size Acceptable Qty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |                         | φ<0.10 or B Zone Disregard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    |                         | 0.10<∮≤0.20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|    |                         | 0.20<∮≤0.50 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|    |                         | 0.50 < φ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    |                         | Total 2 Unit: mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 8  | Polarizer mis-placement | Polarizer should neither extends to glass edge nor extends into seal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |



| No | Item                   | Crite                        | rion                                                                               |                        |                       |
|----|------------------------|------------------------------|------------------------------------------------------------------------------------|------------------------|-----------------------|
| 9  |                        |                              | 11011                                                                              |                        |                       |
| 9  | Crack and chip Remark: | 1. General                   |                                                                                    |                        |                       |
|    | X: Length              |                              |                                                                                    |                        |                       |
|    | direction              | X                            | Acceptal                                                                           |                        |                       |
|    | Y: Short               | 1 Y                          | X                                                                                  | Y                      | Z                     |
|    | direction              | Z                            | ≤5mm                                                                               | shall not reach        | €t/2                  |
|    | Z: Thickness direction |                              |                                                                                    | to 1F/3                |                       |
|    | t: Glass thickness     |                              |                                                                                    |                        |                       |
|    | a: LCD length          |                              |                                                                                    |                        |                       |
|    | W: Terminal<br>Width   | 2. Corner Y                  | Acceptal                                                                           | ole criterion          |                       |
|    | F: seal width          |                              | X                                                                                  | Y                      | Z                     |
|    |                        |                              | ≤5mm                                                                               | shall not reach to     | €t                    |
|    |                        | Z                            |                                                                                    | F/3                    |                       |
|    |                        | Wy 3. Crack of the ball of Y | X                                                                                  |                        | $oxed{Z} \leqslant t$ |
|    |                        | 4. Other than terminal       | $\begin{array}{ c c } \textbf{Accept} \\ \textbf{X} \\ \leqslant a/10 \end{array}$ | shall not reach to F/3 | Z<br>≤t/3             |



| No | Item                           | Criterion                                                                                                                                                                                                    |
|----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Protruded W: Terminal Width    | Acceptable criteria: $Y \le 1/5W$                                                                                                                                                                            |
| 11 | Pin                            | 1. Positioning  A < 0.3mm  2 Epoxy coverage  A \cdot B Epoxy Maximum height shall extend above front rear polarizer surface  3. No stain, rust nor discoloration of the insulating portion shall be allowed. |
| 12 | Total no. of acceptable defect | A. Zone  Maximum 4 non-conformities per one unit.  Defect distance: each point to be separated over 5mm  B. Zone  It is acceptable when it is no trouble for quality and assembly in customer's end product. |



### 9.6 Reliability Standards

Reliability test condition:

| Item                 | Condition                                         | Time (hrs) | Assessment       |
|----------------------|---------------------------------------------------|------------|------------------|
| High temp. Storage   | 80°C                                              | 240        |                  |
| High temp. Operating | 70°C                                              | 240        |                  |
| Low temp. Storage    | -40°C                                             | 240        | No abnormalities |
| Low temp. Operating  | -20°C                                             | 240        |                  |
| Humidity             | 40°C/90%RH                                        | 240        | in functions     |
| Temp. Cycle          | -40°C ← 25°C →80°C                                | 10cycles   | and appearance   |
|                      | $(30 \min \leftarrow 5 \min \rightarrow 30 \min)$ |            |                  |

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature (20±8°C), normal humidity (below 65% RH), and in the area not exposed to direct sun light.

## 9-7. Precaution for using COG

COG is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

### **General Precautions:**

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not made any modification on the PCB without consulting TRI-T.
- 5. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

### **Static Electricity Precautions:**

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

### **Soldering Precautions:**

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C±10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

### **Operation Precautions:**

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.



### **Operation Precautions:**

- 1. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 2. For long-term storage over 40°C is required, the relative humidity should be kept below 60%. Avoid direct sunlight.

### **Limited Warranty**

TRI-T modules are not consumer products, but may be incorporated by TRI-T's customers into consumer products or components thereof, TRI-T does not warrant that its modules and components are fit for any such particular purpose.

- 1. The liability of TRI-T is limited to repair or replacement on the terms set forth below. TRI-T will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. Unless otherwise agreed in writing between TRI-T and the customer, TRI-T will only replace or repair any of its LCD which is found defective electrically or visually when inspected in accordance with TRI-T QUALITY INSPECTION STANDARD.
- No warranty can be granted if any of the precautions state in handling liquid crystal
  display above has been disregarded. Broken glass, scratches on polarizer mechanical
  damages as well as defects that are caused accelerated environment tests are excluded
  from warranty.
- 3. In returning the LCM, they must be properly packaged; there should be detailed description of the failures or defect.