

ARM Cross Development with Eclipse

 Version 3

By: James P. Lynch

December 11, 2005

Preface to Version 3

When I revised this tutorial in September 2005, everything needed to provide a complete
Eclipse/ARM cross-development package was in place. The only shortcoming was that the
Eclipse debugger could not debug programs in FLASH. Now that issue has been resolved.

Macraigor Systems LLC updated their free OCDRemote utility to handle hardware
breakpoints (GDB remote serial protocol “Z1,addr,length” commands).

The Macraigor OCDRemote utility has a monitor command (monitor softbkpts off) that
forces the utility to convert all Eclipse software breakpoints (which don’t work in FLASH) to
hardware breakpoints (ARM7 cores allow two hardware breakpoints and they do, of course,
work in FLASH). When you double-click on the “breakpoint” area on the left side of the
source window in Eclipse, you are now setting an ARM hardware breakpoint.

You can only set two hardware breakpoints (a limitation of the ARM7 core). This is not
much of a roadblock. You can single-step in and out of functions, inspect and change
variables, view memory dumps, and work in assembler mode.

If you need more than two breakpoints, you can elect not to send the “monitor softbkpts off”
command during GDB initialization and thus debug RAM-based applications with all the
software breakpoints you desire.

 James P. Lynch

1 Introduction

I credit my interest in science and electronics to science fiction movies in the fifties.
Robbie the Robot in the movie “Forbidden Planet” especially enthralled me and I
watched every episode of Rocky Jones, Space Ranger on television. In high
school, I built a robot and even received a ham radio operator license at age 13.

Electronic kits were popular then and I built many Heath kits and Knight kits,
everything from ham radio gear to televisions, personal computers and robots.
These kits not only saved money at the time, but the extensive instruction manuals
taught the basics of electronics.

Unfortunately, surface mount technology and pick-and-place machines obliterated
any cost advantage to “building it yourself” and Heath and Allied Radio all dropped
out of the kit business.

What of our children today? They have home computers to play with, don’t they?
Do you learn anything by playing a Star Wars game or downloading music? I think
not, while these pastimes may be fun they are certainly not intellectually creative.

A couple years ago, there were 5 billion microcomputer chips manufactured planet-
wide. Only 300 million of these went into desktop computers. The rest went into
toasters, cars, fighter jets and Roomba vacuum cleaners. This is where the real
action is in the field of computer science and engineering. It’s called “embedded
software development”.

Can today’s young student or home hobbyist tired of watching Reality Television
dabble in microcomputer electronics? The answer is an unequivocal YES!

Most people start out with projects involving the Microchip PIC series of microcontrollers.
You may have seen these in Nuts and Volts magazine or visited the plethora of web sites
devoted to PIC computing. PIC microcomputer chips are very cheap (a couple of dollars)
and you can get an IDE (Integrated Development Environment), compilers and emulators
from Microchip and others for a very reasonable price.

Another inexpensive microcontroller for the hobbyist to work with is the Rabbit
microcomputer. The Rabbit line is an 8-bit microcontroller with development
packages (board and software) costing less that $140.

I’ve longed for a real, state-of-the-art microcomputer to play with. One that can do 32-bit
arithmetic as fast as a speeding bullet and has all the on-board RAM and EPROM needed
to build sophisticated applications. My prayers have been answered recently as big players
such as Texas Instruments, Philips and Atmel have been selling inexpensive
microcontroller chips based on the 32-bit ARM architecture. These chips have integrated
RAM and FLASH memory, a rich set of peripherals such as serial I/O, PWM, I2C, SSI,
Timers etc. and high performance at low power consumption.

A very good example from this group is the Philips LPC2000 family of microcontrollers. The
LPC2106 has the following features, all enclosed in a 48-pin package costing about $11.88
(latest price from Digikey for one LPC2106).

Key features

• 16/32-bit ARM7TDMI-S processor.
• 64 kB on-chip Static RAM.
• 128 kB on-chip Flash Program Memory. In-System Programming (ISP) and In-Application

Programming (IAP) via on-chip boot-loader software.
• Vectored Interrupt Controller with configurable priorities and vector addresses.
• JTAG interface enables breakpoints and watch points.
• Multiple serial interfaces including two UARTs (16C550), Fast I²C (400 kbits/s) and SPI™.
• Two 32-bit timers (7 capture/compare channels), PWM unit (6 outputs), Real Time Clock and

Watchdog.
• Up to thirty-two 5 V tolerant general-purpose I/O pins in a tiny LQFP48 (7 x 7 mm2) package.
• 60 MHz maximum CPU clock available from programmable on-chip Phase-Locked Loop with settling

time of 100 us.
• On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.
• Two low power modes: Idle and Power-down.
• Processor wake-up from Power-down mode via external interrupt.
• Individual enable/disable of peripheral functions for power optimization.
• Dual power supply:

o CPU operating voltage range of 1.65 V to 1.95 V (1.8 V +- 8.3 pct.).
o I/O power supply range of 3.0 V to 3.6 V (3.3 V +- 10 pct.) with 5 V tolerant I/O pads.

Several companies have come forward with the LPC2000 microcontroller chips placed on
modern surface-mount boards, ready to use. Olimex and New Micros have a nice catalog
of inexpensive boards using the Philips ARM family. I wrote a similar tutorial for the New
Micros TiniARM a year ago and you can see it on their web site www.newmicros.com.

Olimex, an up-and-coming electronics company in Bulgaria, offers a family of Philips
LPC2100 boards. Specifically they offer three versions with the LPC2106 CPU. The Olimex
web site is www.olimex.com. You can also buy these from Spark Fun Electronics in
Colorado; their web site is www.sparkfun.com The Olimex boards are also carried by
Microcontroller Pros in California, their web site is www.microcontrollershop.com

This is the Olimex LPC-H2106 header board. You can
literally solder this tiny board onto Radio Shack
perfboard, attach a power supply and serial cable and
start programming. It costs about $49.95
Obviously, it requires some soldering to get started.

This is the Olimex LPC-P2106 prototype board.
Everything is done for you. There’s a power connector
for a wall-wart power supply, a DB-9 serial connector
and a JTAG port. It costs about $59.95 plus $2.95 for
the wall-wart power supply.

http://www.newmicros.com/
http://www.olimex.com/
http://www.sparkfun.com/
http://www.microcontrollershop.com/

This is the Olimex LPT-MT development board; it has
everything the prototype board above includes plus a
LCD display and four pushbuttons to experiment with. It
costs about $79.95 plus $2.95 for the wall-wart power
supply.

For starting out, I would recommend the LPC-P2106 prototype board since it has an open
prototype area for adding I2C chips and the like for advanced experimentation.

When you do design and develop something really clever, you could use the LPC-H2106
header board soldered into a nice Jameco or Digikey prototype board and know that the
CPU end of your project will work straight away. If you need to build multiple copies of your
design, Spark Fun can get small runs of blank circuit boards built for $5.00 per square inch.
You can acquire the Eagle-Lite software from CadSoft for free to design the schematic and
PCB masks.

So the hardware to experiment with 32-bit ARM microprocessors is available and
affordable. What about the software required for editing, compiling, linking and downloading
applications for the LPC2106 board?

Embedded microcomputer development software has always been considered
“professional” and priced accordingly. It’s very common for an engineer in a technical
company to spend $1000 to $5000 for a professional development package. I once ordered
$18,000 of compilers and emulators for a single project. In the professional engineering
world, time is money. The commercial software development packages for the ARM
architecture install easily, are well supported and rarely have bugs. In fact, most of them
can load your program into either RAM or FLASH and you can set breakpoints in either.
The professional compiler packages are also quite efficient; they generate compact and
speedy code.

The Rowley CrossWorks recommended by Olimex is $904.00, clearly out of the range for
the student or hobby experimenter. I’ve seen other packages going up as high as $3000. A
professional would not bat an eyelash about paying this – time is money.

There is a low cost alternative to the high priced professional software development
packages, the GNU toolset. GNU is the cornerstone of the open-source software
movement. It was used to build the LINUX operating system. The GNU Toolset includes
compilers, linkers, utilities for all the major microprocessor platforms, including the ARM
architecture. The GNU toolset is free.

The editor of choice these days is the Eclipse open-source Integrated Development
Environment (IDE). By adding the CDT plugin (C/C++ Development Toolkit), you can edit
and build C programs using the GNU compiler toolkit. Eclipse is also free.

Philips provides a Windows flash programming utility that allows you to transfer the hex file
created by the GNU compiler/linker into the onboard flash EPROM on the LPC2106
microprocessor chip. The Philips tool is also free.

Macraigor has made available a free Windows utility called OCDremote that allows the
Eclipse/GDB (GNU Debugger) to access the Philips LPC2106 microprocessor via the JTAG
port using an expensive device called the “wiggler”. The Norwegian company Zylin has
created a custom version of CDT that enables the debugger to work better with cross-
development applications.

At this point, you’re probably saying “this is great – all these tools and they’re FREE!” In the
interest of honesty and openness, let’s delineate the downside of the free open software
GNU tools.

• The GNU tools do not currently generate as efficient code as the professional
compilers.

• The Eclipse CDT Debugger can only set two hardware breakpoints in FLASH.

• You need an internet broadband connection to download all these free software

tools.

If you were a professional programmer, you might not accept these limitations. For the
student or hobbyist, the Eclipse/GNU toolset still gives fantastic capabilities for zero cost.

The Eclipse/GNU Compiler toolset we will be creating in this tutorial operates in three
modes.

A. Application programmed into FLASH (no debugging)

DB-9
Serial Port

COM1

Short the BSL
jumper to download
and program into
flash.

Remove the BSL
jumper to execute

You can use a
standard 9-pin PC
serial cable to
connect COM1 to the
Olimex board.

In this mode, the Eclipse/GNU development system assembles, compiles and links your
application for loading into FLASH memory. The output of the compiler/linker suite is an
Intel hex file, e.g. main.hex.

The Philips LPC2000 Flash Utility is started within Eclipse and will download your hex file
and program the flash memory through the standard COM1 serial cable. The Boot Strap
Loader (BSL) jumper must be shorted (installed) to run the Philips flash programming
utility.

To execute the application, you remove the BSL jumper and push the RESET button to
start the application.

B. Application programmed and debugged into RAM

LPT1

The BSL jumper
generally doesn’t
matter while using
JTAG

Olimex ARM JTAG Adapter
 (WIGGLER)

20-pin
JTAG
Port

Install the Debug
JTAG jumper while
running from RAM

In this mode, the Eclipse/GNU development system assembles, compiles and links
your application for loading into RAM memory. The output of the compiler/linker
suite is a GNU main.out file.

The PC is connected from the PC’s printer port LPT1 to the JTAG port through the
Olimex ARM JTAG interface (costs about $19.95 from Spark Fun Electronics).
The Olimex ARM JTAG is a clone of the Macraigor Wiggler.

You can run the OCDRemote program as an external tool from within Eclipse. The
CDT debugger (started from within Eclipse) communicates with the Macraigor
OCDRemote program that operates the JTAG port using the Wiggler. With the
CDT debugger, you can connect to the Wiggler and load the GNU main.out file
into RAM. From this point on, you can set software breakpoints, view variables and
structures and, of course, run the application.

The drawback is that the application must fit within RAM memory on the LPC2106,
which is 64 Kbytes. Still, it’s better than nothing.

C. Application programmed and debugged into FLASH

LPT1

The BSL jumper is installed
while programming FLASH.

The BSL jumper is removed
while debugging FLASH.

Olimex ARM JTAG Adapter
 (WIGGLER)

20-pin
JTAG
Port

Install the Debug
JTAG jumper while
debugging FLASH

COM1

In this mode, the Eclipse/GNU development system assembles, compiles and links your
application for loading into FLASH memory. The output of the compiler/linker suite is an
Intel hex file, e.g. main.hex.

The Philips LPC2000 Flash Utility is started within Eclipse and will download your hex file
and program the flash memory through the standard COM1 serial cable. The Boot Strap
Loader (BSL) jumper must be shorted (installed) to run the Philips flash programming
utility.

Next you remove the Boot Strap Loader (BSL) jumper and attach the JTAG cable
(or just leave it in). By starting the OCDRemote utility, the Eclipse debugger can
operate in FLASH with two hardware breakpoints.

The Eclipse debugger will initialize the GDB debugger by loading the symbols from
the output file “main.out”. It will also instruct the OCDRemote utility to convert all
Eclipse software breakpoints to hardware breakpoints. It will set a temporary

hardware breakpoint at main() and set the PC to 0x000000 (the reset vector). This
will start execution and the Eclipse debugger will stop at main().

Now you can debug to your heart’s content; as long as you don’t specify more than
two breakpoints.

 If you are very new to ARM microcomputers, there’s no better introductory book
than “The Insider’s Guide to the Philips ARM7-Based Microcontrollers” by
Trevor Martin. Martin is an executive of Hitex, a UK vendor of embedded
microcomputer development software and hardware and he obviously understands
his material.

You can download this e-book for free from the Hitex web site.

http://www.hitex.co.uk/arm/lpc2000book/index.html

There is a controversial section in Chapter 2 with benchmarks showing that the GNU
toolset is 4 times slower in execution performance and 3.5 times larger in code size than
other professional compiler suites for the ARM microprocessors. Already Mr. Martin has
been challenged about these benchmarks on the internet message boards; see “The
Dhrystone benchmark, the LPC2106 and GNU GCC” at this web address:

 http://www.compuphase.com/dhrystone.htm

http://www.hitex.co.uk/arm/lpc2000book/index.html
http://www.compuphase.com/dhrystone.htm

Well, we can’t fault Trevor Martin for tooting his own horn! In any case, Martin’s book is a
magnificent work and it would behoove you to download and spend a couple hours reading
it. I’ve used Hitex tools professionally and can vouch for their quality and value. Read his
book! Better yet, it’s required reading.

My purpose in this tutorial is to guide the student or hobbyist through the myriad of
documentation and web sites containing the necessary component parts of a
working ARM software development environment. I’ve devised a simple sample
program that blinks an LED that is compatible in every way with the GNU
assembler, compiler and linker.

There are two variants of this program; a FLASH-based version and a RAM-based
version. The RAM-based version is limited to the LPC2106 RAM space (64K) but
you can set an unlimited number of software breakpoints. The FLASH-based
version can be burned into onboard flash using the Philips ISP utility and then
debugged using JTAG as long as you limit yourself to two breakpoints (hardware).

If you get this to work, you are well on your way to the fascinating world of
embedded software development. Take a deep breath and HERE WE GO!

2 Installing the Necessary Components

To set up an ARM cross-development environment using Eclipse, you need to
download and install several components. The required parts of the Eclipse/ARM
cross development system are:

1. SUN Java Runtime

2. Eclipse IDE

3. Eclipse CDT Plug-in for C++/C Development (Zylin custom version)

4. CYGWIN GNU C++/C Compiler and Toolset for Windows

5. GNUARM GNU C++/C Compiler for ARM Targets

6. Philips Flash Programmer for LPC2100 Family CPUs

7. Macraigor OCDremote for JTAG debugging

3 JAVA Runtime

The Eclipse IDE was written entirely in JAVA. Therefore, you must have the JAVA
runtime installed on your Windows computer to run Eclipse. Most people already
have JAVA set up in their Windows system, but just in case you don’t have JAVA
installed, here’s how to do it.

The JAVA runtime is available free at www.sun.com. The following screen will
appear. Click on “Downloads – Java 2 Standard Edition” to continue.

http://www.sun.com/

Select the “latest and greatest” Java runtime system by clicking on J2SE 5.0.

Specifically, we need only the Java Runtime Environment (JRE). Click on
“Download JRE 5.0 Update 3.”

The Sun “Terms of Use” screen appears first. You have to accept the Sun binary
code license to proceed. If you develop a commercial product using the Sun JAVA
tools, you will have to pay royalties to them.

Select the “accept”
radio button and click
“continue” to proceed.

One more choice to decide on – we want the “online” installation for Windows.

Here’s a blow-up of the line we must click on. We select “online” so we can install immediately.

Finally the “file download” window appears. Click on “Run” to download and run the
installation.

`

Now the downloading will start.

After downloading, the installation will proceed automatically.

When the Java Runtime Environment installation completes, you will see this display. Click
on “Finish.”

As a quick check, go to the Windows Start menu and select “Start – Control Panel – Add
or Remove Programs.” Scroll down the list of installed programs and see if the Java J2SE
Runtime Environment was indeed installed!

The Sun Microsystems web site is very dynamic, changing all the time. Don’t be surprised if
some of the example displays shown here are a bit different.

4 Eclipse IDE

The Eclipse IDE is a complete integrated development platform similar to Microsoft’s Visual
Studio. Originally developed by IBM, it has been donated to the Open-Source community
and is now a massive world-wide Open-Source development project.

Eclipse, by itself, is configured to edit and debug JAVA programs. By installing the CDT
plug-ins, you can use Eclipse to edit and debug C/C++ programs (more on that later).

When properly setup, you will have a sophisticated programmer’s editor, compilers and
debugger sufficient to design, build and debug ARM applications.

You can download Eclipse for free at the following web site.

www.eclipse.org

The following Eclipse welcome page will display. Expect some differences from my
example below since the Eclipse web site is very dynamic.

http://www.eclipse.org/

Click on “Downloads” to get things started.

Click on “downloads”

The Eclipse download window will appear. Eclipse is constantly being improved
and new releases come several times a year. Usually the safest thing to download
is the “official” latest release. When this tutorial was created, the latest release was
Eclipse SDK 3.1

Click on Eclipse SDK 3.1
to start download

When working with the Eclipse and CDT, it’s important to be sure that the CDT plugin
you’ve selected is compatible with the Eclipse revision you also selected. Be sure to study
the Eclipse web sites to be sure that you have compatible revisions selected.

If you click on Eclipse SDK 3.1 where it says “Download Now:” shown above, this is the
Windows version of the download.

What appears next is a list of download mirror sites that host the Eclipse components. I
selected the University of Buffalo in my home town (and where I got my Master’s degree).

Great! This mirror
site is in my home

When the mirror site starts the download process, you have to select a destination directory
to place the Eclipse zip file. In my case, I created an empty C:/scratch directory on one of
my hard drives (you could use any other drive as well).

First click on Save below.

Now browse to the c:/scratch directory that you created previously.

Click on Save to start the download.

Now the download will start. Eclipse is delivered as a ZIP file. It’s 103 megabytes in length
and takes 9 minutes to download with my broadband cable modem. If you have a dialup
internet connection, this will be excruciating. If you don’t have a cable modem high-speed
internet connection, I suggest you find somebody who does and go over there with a blank
CDROM and a gift.

When the Eclipse download completes, you should see the following zip file in your scratch
directory.

Eclipse is delivered as a ZIP file (eclipse-SDK-3.1-win32.zip). You can use WinZip to
decompress this file and load its constituent parts on your hard drive.
If you don’t have WinZip, you can get a free evaluation version from this address:

http://www.winzip.com/

There’s a decent Help file supplied by WinZip. Therefore, we’re going to assume that the
reader is able to use a tool such as WinZip to extract from zip files.

http://www.winzip.com/

In my computer, with WinZip installed, double-clicking on the zip file name (eclipse-SDK-
3.1-win32.zip) in the Windows Explorer display above will automatically start up WinZip.
Click on “Extract” to start the Eclipse file decompression.

WinZip will ask you into what directory you wish to extract the contents of the zip file. In this
case, you must specify the root drive C:

The WinZip Utility will start extracting all the Eclipse files and directories into a c:/eclipse
directory on your root drive C:

At this point, Eclipse is already installed (some things are done when you run it for
the first time). The beauty of Eclipse is that there are no entries made into the
Windows registry, Eclipse is just an ordinary executable file. Here’s what the
Eclipse directory looks like at this point.

You can create a desktop icon for conveniently starting Eclipse by right-clicking on
the Eclipse application above and sending it to the desk top.

Right-click on the Eclipse
application and send it to
the desk top.

Now is a good time to test that Eclipse will actually run. Click on the desktop icon to start
the Eclipse IDE.

If the Eclipse Splash Screen appears, we have succeeded. If not, chances are that the
Java Run Time Environment is not in place. Review and repeat the instructions on installing
Java on your computer.

The first order of business is to specify the location of the Workspace. I choose to place the
workspace within the Eclipse directory. You are free to place this anywhere; you can have
multiple workspaces; here is where you make that choice.

When you click OK, the Eclipse main screen will start up.

If you made it this far, you now have a complete Eclipse system capable of developing
JAVA programs for the PC. There are a large number of JAVA books and some really good
ones showing how to develop Windows applications with JAVA using the Eclipse toolkit.

Eclipse itself was written entirely in JAVA and this shows you just how sophisticated a
program can be developed with the Eclipse JAVA IDE.

However, the point of this tutorial is to show how the Eclipse platform with the CDT plug-ins
can be used to develop embedded software in C language for the ARM microcomputers.

5 Eclipse CDT

Eclipse, just by itself, is designed to edit and debug JAVA programs. To equip it to
handle C and C++ programs, you need to download the CDT (C Development Toolkit)
plug-in. The CDT plug-in is simply zip files that are unzipped into the Eclipse directory.

Unfortunately, the CDT plug-in from the Eclipse web site has some problems
debugging applications in a cross-development environment (e.g. where the target
is a circuit board with an ARM microprocessor and a JTAG interface). To the
rescue is the Norwegian engineering company Zylin who have developed a special
custom version of CDT that properly interfaces the GDB debugger to a remote
target. The Zylin version of CDT was developed with the cooperation of the CDT
Development Team and is essentially a copy of the latest version of CDT with the
special debug modifications. The open source community owes a debt of thanks to
Øyvind Harboe and his associates at Zylin.

To download the Zylin version of the CDT plug-in, click on the following link:

http://www.zylin.com/embeddedcdt.html

The Zylin website page devoted to the CDT plug-in will have a link to the latest “snapshot”.
This snapshot is two zip files that you will extract to the c:\eclipse folder.

Click on this link to get the
latest Zylin CDT snapshot.

http://www.zylin.com/embeddedcdt.html

Download the following two files from the Zylin web site.

http://www.zylin.com/embeddedcdt-20050810.zip
http://www.zylin.com/zylincdt-20050810.zip

Download these two
files to c:/scratch

First, click on http://www.zylin.com/embeddedcdt-20050810.zip to download. Then click
on “Save” in the File Download window.

http://www.zylin.com/embeddedcdt-20050810.zip
http://www.zylin.com/zylincdt-20050810.zip
http://www.zylin.com/embeddedcdt-20050810.zip

Select the temporary c:\scratch directory as the target of the download and click “Open.”

The first Zylin CDT zip file will download into the c:\scratch folder. This file is an 11 Mb
download.

Next, click on http://www.zylin.com/zylincdt-20050810.zip to download. Then click on
“Save” in the File Download window.

http://www.zylin.com/zylincdt-20050810.zip

Select the temporary c:\scratch directory as the target of the download.

The second Zylin CDT zip file will download into the c:\scratch folder. This file is a shorter
file, only 173 Kb.

Select both Zylin CDT files in the c:\scratch folder using Windows Explorer and use WinZip
to extract them to the c:\eclipse folder.

To verify that Eclipse had the CDT installed properly, start Eclipse by clicking on the
desktop icon.

When Eclipse starts, click on “File – New - Project…”

When the New Project window appears, check if C and C++ appear as potential projects. If
this is true, Eclipse CDT has been installed properly.

If you don’t see the C and C++ listed, here’s what might have happened. It’s possible to
disable the CDT plug-in. To see where this may be done, click “Help – Software Updates
– Manage Configuration”.

If you click on Eclipse C/C++ Development Tools 3.1.0, you will see an option to disable
the CDT plug-in. If this has been disabled, use these menus to reverse this situation.

CDT Plug-in would
be disabled if
somebody clicked
the “disable” option.

6 CYGWIN GNU Toolset for Windows

The GNU toolset is an open-source implementation of a universal compiler suite; it
provides C, C++, ADA, FORTRAN, JAVA, and Objective C. All these language
compilers can be targeted to most of the modern microcomputer platforms (such
as the ARM 32-bit RISC microcontrollers) as well as the ubiquitous Intel/Microsoft
PC platforms. By the way, GNU stands for “GNU, not Unix”, really – I’m serious!

Unfortunately for all of us that have desktop Intel/Microsoft PC platforms, the GNU
toolset was originally developed and implemented with the Linux operating system.
To the rescue came Cygwin, a company that created a set of Windows dynamic
link libraries that trick the GNU compiler toolset into thinking that it’s running on a
Linux platform. If you install the GNU compiler toolset using the Cygwin system,
you can literally open up a DOS command window on your screen and type in a
DOS command like this:

>arm-elf-gcc –g –c main.c

The above will compile the source file main.c into an object file main.o for the
ARM microcontroller architecture. In other words, if you install the Cygwin GNU
toolset properly, you can forget that the GNU compiler system is Linux-based.

Normally, the Cygwin installation gives you a compiler toolset whose target
architecture is the Windows/Intel PC platform. It does not include a compiler toolset
for the ARM microprocessors, the MIPS microprocessors, and so forth.

It is possible to build a compiler toolset for the ARM processors using the generic
Cygwin GNU toolkit. In his book “Embedded System Design on a Shoestring”,
Lewin A.R.W. Edwards gives detailed instructions on just how to do that.
Fortunately, there are quite a few pre-built tool chains on the internet that simplify
the process. One such tool chain is GNUARM which gives you a complete set of
ARM compilers, assemblers and linkers. This will be done in the next section of
this tutorial.

It’s worth mentioning that the GNUARM tool chain doesn’t include the crucial
MAKE utility, it’s in the Cygwin tool kit we’re about to install. This is why you have
to add two path specifications to your Windows environment; one for the
c:/cygwin/bin folder and one for the c:/programfiles/gnuarm/bin.

The Cygwin site that has the GNU toolset for Windows is:

 www.cygwin.com

http://www.cygwin.com/

The Cygwin web site opens as follows:

The first thing to do is to click on the install icon:

We need to download the setup executable and automatically run it.

Click on “Run” to
download and run
the Cygwin setup
program.

Now the Cygwin wizard will start up. Select “Next” to continue.

Choose “Install from Internet” and then click “Next.”

Now we specify a directory where all the downloaded components go, our c:/scratch folder
will do just fine.

Since I have a high speed internet connection, I always select “Direct Connection.” Click
“Next” to continue.

Now the Cygwin Installer presents you with a list of mirror sites that can deliver the Cygwin
GNU Toolkit. It’s a bit of a mystery which one to choose; I picked http://planetmirror.com
because it sounds cool. You may have to experiment to find one that downloads the
fastest. Click “Next” to continue.

http://planetmirror.com/

Cygwin will download a few bits for a couple of seconds and then display this “Select
Packages” list allowing you to tailor exactly what is included in the down load.

The screen above allows you to specify what GNU packages you wish to install.

Basically, we want an installation that will allow us to compile for the Windows XP / Intel
platform. This will allow us to use Eclipse to build Windows applications (not covered in this
document). Remember that we’ll be installing the GNUARM suite of compilers, linkers etc.
for the ARM processor family shortly.

If you look at the Cygwin “Select Packages” screen below, you’ll see the following line.

You must click on the little circle with the two arrowheads until the line changes to this:

This will force installation of the default GNU compiler suite for Windows/Intel targets.
Here’s the “Select Packages” screen before clicking on the circle with arrowheads.

The following four packages must be selected and changed from “default” to “install.”

Archive Default Archive Install
Devel Default Devel Install
Libs Default Libs Install
Web Default Web Install

Click on the little circle with the arrowheads until you change the four packages listed above
from “default” to “install.” You should see the screen displayed directly below. Note that
the Archive, Devel, Libs and Web components are selected for “Install”. Everything else is
left as “default.”

Click “Next’ to start the download.

Now the Cygwin will start downloading. This creates a huge 700 Megabyte directory on
your hard drive and takes 30 minutes to download and install using a cable modem.

When the installation completes, Cygwin will ask you if you want any desktop icons and
start menu entries set up. Say “No” to both. These icons allow you to bring up the BASH
shell emulator (like the command prompt window in Windows XP). This would allow you do
some Linux operations, but this capability is not necessary for our purposes here. Click on
“Finish” to complete the installation.

Now the Cygwin installation manager completes and shows the following result.

The directory c:\cygwin\bin must be added to the Windows XP path environment
variable. This allows Eclipse to easily find the Make utility, etc.

Using the Start Menu, go to the Control Panel and click on the “System” icon.

Then click on the “Advanced” tab and select the “Environment Variables” icon. Highlight
the “Path” line and hit the “Edit” button. Add the addition to the path as shown in the dialog
box shown below (don’t forget the semicolon separator). The Cygwin FAQ advises putting
this path specification before all the others.

We are now finished with the CYGWIN installation. It runs silently in the background and
you should never have to think about it again.

7 Downloading the GNUARM Compiler Suite

At this point, we have all the GNU tools needed to compile and link software for
Windows/Intel computers. It is possible to use all this to build a custom GNU compiler suite
for the ARM processor family. The very informative book “Embedded System Design on a
Shoestring” by Lewin A.R.W. Edwards ©2003 describes how to do this and it is rather
involved.

Fortunately, Rick Collins, Pablo Bleyer Kocik and the people at gnuarm.com have come to
the rescue with pre-built GNU compiler suite for the ARM processors. Just download it with
the included installer and you’re ready to go.

Click on the following link to download the GNUARM package.

www.gnuarm.com

The GNUARM web site will display and you should click on the “Files” tab.

The appropriate toolchain to select is Binaries – Cygwin - GCC-3.4.1

The correct package to download is Binaries Cygwin – GCC- 4.0 toolchain

http://www.gnuarm.com/

Just like all the other downloads we’ve done, we direct this one to our empty download
directory on the hard drive. Here we click “Save” and then specify the download
destination.

Once again, our c:/scratch directory will suffice.

As you can see, this download has a very long name!

This download is a 18 megabyte file and takes 30 seconds on a cable modem.

The download directory now has the following setup application with the following
unintelligible filename: bu-2.15_gcc-3.4.1-c-c++-java_nl-1.12.0_gi-6.0.exe

Click on that filename to start the installer.

Click on this
application to start
the GNUARM
installer

The GNUARM installer will now start. Click “Next” to continue.

Accept the GNU license agreement – don’t worry, it’s still free. Click “Next” to continue.

We’ll take the default and let it install into the “Program Files” directory. Click “Next” to
continue.

We’ll also take the defaults on the “Select Components” window. Click “Next” to continue.

Take the default on this screen. Click “Next” to continue.

It’s very important that you don’t check “Install Cygwin DLLs” below. We already have the
Cygwin DLLs installed from our Cygwin environment installation. In fact, the ARM message
boards have had recent comments suggesting that the Cygwin DLL installation from within
GNUARM has some problems.

Since all operations are called from within Eclipse, we don’t need a “desktop icon” either.
Click “Next” to continue.

Click on “Install” to start the GNUARM installation.

Sit back and watch the GNUARM compiler suite install itself.

When it completes, the following screen is presented. Make sure that “Add the
executables directory to the PATH variable” is checked. This is crucial.

This completes the installation of the compiler suites. Since Eclipse will call these
components via the make file, you won’t have to think about it again.

It’s worth mentioning that the GNUARM web site has a nice Yahoo user group with
other users posing and answering questions about GNUARM. Pay them a visit.
The GNUARM web site also has links to all the ARM documentation you’ll ever
need.

8 Installing the Philips LPC2000 Flash Utility into Eclipse

The Philips LPC2000 Flash Utility allows downloading of hex files from the COM1
port of the desktop computer to the Olimex LPC-P2106 board’s flash (or RAM)
memory.

We need to download the latest version of this program from the Philips web site
and unzip and install it into the program files directory. Then we will start Eclipse
and add the LPC2000 Flash Utility as an external tool to be invoked.

Click on the following link to access the Philips LPC2106 web page.

www.semiconductors.philips.com/pip/LPC2106.html

The following web page for the LPC2106 should open.

http://www.semiconductors.philips.com/pip/LPC2106.html

If you scroll down this page, you will see a link to the LPC2000 Flash Utility
download. Click on the ZIP file LPC2000 Flash Utility (date 2004-03-01)

As before, we’ll save the downloaded zip file in our empty c:/scratch directory. This is a
fairly short download, only about 2 megabytes.

We’ll use WinZip to unzip this into the c:/scratch directory.

Now you can see that the download directory has a setup utility and another zip file
containing the LPC2000 Hex Utility. Click on the setup.exe application to start the
installer.

Click on setup to
start the installer

The LPC2000 Flash Utility setup now starts. Click on OK to proceed.

Take the default on this screen below and let it install the LPC2000 Flash Utility into the
Program Files directory.

In a very few seconds, the installer will complete and you should see this screen.

Here we see the utility residing in the Program Files directory, just as promised.

Now that the Philips LPC2000 Flash Utility is properly installed on our computer,
we’d like to install it into Eclipse so that it can be invoked from the RUN pull-down
menu under the “external tools” option. Start Eclipse by clicking on the desktop
icon.

The layout of the Eclipse screen is called a “perspective.” The default perspective
is the “resource” perspective, as shown below.

We need to change it into the C/C++ perspective. In the Window pull-down menu,
select Window – Open Perspective – Other – C/C++ and then click OK.

Eclipse will now switch to the C/C++ perspective shown below and will remember it
when you exit.

Now we want to add the Philips LPC2000 Flash Utility to the “External Tools” part
of the Run pull-down menu. Select RUN – External Tools – External Tools.

We want to add a new program to the External Tools list, so click on Program and
then New.

Note below that there’s a new program under the “program” tree with the name
New_configuration and there’s no specifications as to what it is.

In the Name text box, replace New-configuration with LPC2000 Flash Utility.

In the Location text box, use the “Browse File System” tool to find the Philips
LPC2000 Flash Utility in the Program Files directory. Its name is
LPC210x_IPC.exe.

Here’s the External Tools window before editing.

Here’s the External Tools window after our modifications. Click on Apply to accept.

Close everything out and return to the Run pull-down menu. Select Run – External Tools
– Organize Favorites.

We’re now going to put the Philips PLC2000 Flash Utility into the “favorites” list.
Click on “Add” in the window below.

Click the selection box for LPC2000 Flash Utility. This will add it to the favorites list.

Now when we click on the Run pull-down menu and select “External Tools,” we
see the LPC2000 Flash Utility at the top of the list.

Click on LPC2000 Flash Utility to verify that it runs.

Now cancel the LPC2000 Flash Utility and quit Eclipse.

9 Installing the Macraigor OCDremote Utility

OCDRemote is a utility that listens on a TCP/IP port and translates GDB monitor
commands into Wiggler JTAG commands. Macraigor has always made this utility
available on the internet as “freeware.” The OCDRemote utility can be downloaded
at:

http://www.macraigor.com/full_gnu.htm

You should see the following screen open up.

http://www.macraigor.com/full_gnu.htm

If you scroll the above screen down a bit, you should see the download for
OCDRemote. Click on the link “DOWNLOAD Windows OCDRemote v2.14”.

Make sure you download OCDRemote version v2.14 since this is the
one that supports hardware breakpoints.

Click on “Run” so it will download and immediately install OCDRemote.

The download phase is quick since the OCDRemote is only a couple of megabytes.

The Macraigor installer should start up; click “Next” to continue.

The next screen lets you choose where OCDRemote is installed. OCDRemote
normally installs in c:/cygwin/usr/local/bin.

We’ll have to make sure that this directory is on a Windows Path.

Click on “Next” to accept c:/cygwin/usr/local/bin as the OCDRemote installation
directory.

Clicking on “Install” will complete the OCDRemote installation.

The Wizard completion screen lets you restart your computer to put OCDRemote into the
Windows registry.

Just like the Philips ISP Flash Utility, we should install the Macraigor OCDremote
utility as an “external tool” that can be accessed easily from the Eclipse CDT RUN
pull-down menu.

Start up Eclipse and, if necessary, switch to the C/C++ perspective by clicking
“Window – Open Perspective – Other – C/C++.” In a procedure similar to installing
the Philips Flash Utility as an “External Tool”, click on “Run – External Tools –
External Tools …”

This will bring up the External Tools dialog.

Click on “New” and replace the name with OCDremote. Use the “browse file
system” to find it. It should be in the directory c:/cygwin/usr/local/bin.

The arguments needed to properly start the OCDremote are as follows:

 -cARM7TDMI-S specifies the CPU being accessed
 -p8888 specifies the pseudo TCP-IP port being used
 -dWIGGLER specifies the JTAG hardware being used
 -a1 specifies LPT1 for the Wiggler
 -s4 specifies 100 khz speed (-s8 is the slowest speed)

You will probably want to experiment with the speed setting. Click on “Apply” to finish the
setup.

4

Just like the Philips LPC2000 Flash Utility, we’d like to include the OCDremote
application in our list of “favorite” External Tools. This allows us to quickly start the
OCDremote JTAG server from within Eclipse.

Click on “Run – External Tools – Organize Favorites”

Now click on “Add…” in the Organize External Tools … window and follow that by
checking “OCDremote” in the Add External Tools Configurations: window. Click on
“OK” to add the OCDremote to the list of favorites.

Now verify that the OCDremote is in the list of External Tools favorites. Click on
“Run – External Tools” and see that it’s now included in the list of favorites.

Now is a good time to point out that there’s a handy shortcut button in Eclipse to run the
External Tools. Click on the External Tools button’s down arrow to expand the list of
available tools.

Click on either of the
external tools to start
them running.

10 Verifying the PATH Settings

There is one final and very crucial step to make before we complete our tool building. We
have to ensure that the Windows PATH environment variable has entries for the Cygwin
toolset, the GNUARM toolset and the OCDRemote JTAG server.

These are the three paths that must be present in the Windows environment:

c:\cygwin\bin
c:\program files\gnuarm\bin
c:\cygwin\usr\local\bin

To verify that these paths are present in Windows and to make changes if required, start
the Windows Control Panel by clicking “Start – Control Panel”.

Now click on the “Advanced” tab below.

Now click on the “Environment Variables” button.

In the Environment Variables window, find the line for “Path” in the System Variables box
on the bottom, click to select and highlight it and then click on “Edit”.

Take a very careful look at the “Edit System Variable” window (the Path Edit, in this case).

You should see the following paths specified, all separated by semicolons. The path is
usually long and complex; you may find the bits and pieces for GNUARM interspersed
throughout the path specification. I used cut and paste to place all my path specifications at
the beginning of the specification (line); this is not really necessary.

You should see the following paths specified.

 c:\cygwin\bin;c:\program files\gnuarm\bin;c:\cygwin\usr\local\bin

If any of the three is not present, now is the time to type them into the path specification.

I’ve found that not properly setting up the Path specification is the most common mistake
made in configuring Eclipse to do cross-development.

This completes the setup of Eclipse and all the ancillary tools required to cross develop
embedded software for the ARM microcomputer family (Philips LPC2000 family in specific).

If you stayed with me this far, your patience will soon be rewarded!

Or as Yoda would say, “Rewarded soon, your patience will be!”

11 Creating a Simple Eclipse Project

At this point, we have a fully-functioning Eclipse IDE capable of building C/C++
programs for the ARM microprocessor (specifically for the Olimex LPC-P2106
prototype board).

We will now create an Eclipse C project called “demo2106_blink_flash” that will
blink the board’s red LED_J which is I/O port P0.7. This demo uses no interrupts
and runs totally out of onboard flash memory. It has been intentionally designed to
be as simple and as straightforward as possible.

Click on our Eclipse desktop icon to start Eclipse.

Eclipse should start and present the C/C++ perspective as shown below. If not, select
“Window - Open Perspective – Other - C/C++” to change to the C++ perspective.

To create a project, select File – New – New Project - Standard Make C Project from the
File pull-down menu and click “Next” to continue.

You should see the “New Project” dialog box and enter the project name
(demo2106_blink_flash) in the box as shown below. Click on Next to continue.

The New Project dialog box appears next. If you click on the “Make Builder” tab, you’ll
notice that Eclipse build command is “make.” Make is provided by the Cygwin GNU tools.

Take the default on the “Build
Command”, Eclipse will always
issue a “make” command to
build your project.

These are the targets
that “make” will run
when you hit the Build
All, Build Project or
Clean toolbar buttons.

Let’s remind ourselves that we installed the Cygwin GNU tools earlier in the tutorial and the
Windows Explorer will show that the make.exe file is indeed in the directory c:/cygwin/bin,
as shown below.

This is a good time to point out the differences between “Build All”, “Build Project” and
“Clean.”

Build All Will execute the command “make clean all.”
 It will first clean (delete) all object, list and output files.
 Then it will rebuild everything, whether needed or not.

Build Project Will execute the command “make all.”
 This will not clean (delete) anything.
 It will only compile those source files that are “out-of-date.”

Clean Will execute the command “make clean.”

Will clean (delete) all object, list and output files.

This is no different from opening up a DOS command window and typing the command in
directly, such as.

 > make clean all

If you click “Finish” on the “New Project” dialog, Eclipse will return to the C/C++
Perspective.

Now the C/C++ perspective shows a bona fide project in the “C/C++ projects” box
on the left. As of now, there are no source files created.

We can now use Eclipse/CDT’s import feature to copy the source files into the project.

Assuming that you successfully unzipped the “demo2106_blink_flash.zip” project files
associated with this tutorial to an empty directory such as c:/scratch, you should have the
following source and make files in that directory.

Click on the “File” pull-down menu and then click on “Import.” Then in the “Import”
window, click on “File System.”

When the “Import – File System” window appears, click on the “Browse” button. Hunt for
the sample project which is stored in the c:/scratch/ directory.

Click on the directory “scratch” and hit the “OK” button in the “Import from directory”
window on the left below.

Click on “Select All” in the Import window below right to
get the source files selected for import into our project.

Now we have to indicate the destination for our source files. Click on “Browse” on the line
to the right that says “Into Folder:”

The proper destination folder appears in the Import Into Folder window below.

Click on the folder name “demo2106_blink_flash” and click “OK.” The directory name
“demo2106_blink_flash” should appear in the text box.

Now the Import dialog is completely filled out; we can click on “Finish” to actually import the
source files into our project.

Now the C/C++ perspective main screen will reappear. Click on the “+” expand symbol in
the navigator pane to see if our files have been transferred.

Success is at hand, the expanded Projects view in the Navigator pane on the left shows our
imported files.

This is a good place to identify the imported source files.

 Description of Project Files

lpc210x.h Standard LPC2106 header file
crt.s Startup assembler file
main.c Main C program
makefile GNU makefile
demo2106_blink_flash.cmd GNU Linker script file

12 Description of the LPC210X.H Include File

Let’s look at the lpc210x.h header file. Double-click on it in the Project pane on the left’

ARM peripherals are memory-mapped, so all I/O registers are defined in this file so you
don’t have to type in the absolute memory addresses.

13 Description of the Startup File CRT.S

Now let’s look on the startup assembler file, crt.s. Double-click on it.
This part of the crt.s file has some symbols set to the various stack sizes and mode bits.

This part of the crt.s file sets up the interrupt vectors.

Note that all of the code and data that follows goes into the .text section. It is also in ARM
32-bit code (not Thumb).

One label is made global, _startup. This will be available to other modules in the project
and will also appear in the map.

The GNU assembler doesn’t require you .extern anything. If a symbol is not defined in the
assembler file, it is automatically assumed to be external.

The vector table is 32 bytes long and is required to be placed at address 0x000000.

You will see later in this tutorial that the interrupt service routines referenced in the Vector
Table are just endless-loop stubs in the main.c function and the interrupts are turned off.

The NOP instruction at address 14 is an empty spot to hold the checksum. Page 179 of the
Philips LPC2106 manual states:

The reserved ARM interrupt vector location (0x0000 0014) should contain the 2’s
complement of the check-sum of the remaining interrupt vectors. This causes the
checksum of all of the vectors together to be 0.

Before you fall on your sword, you’ll be happy to know that the Philips Flash Loader will
calculate that checksum and insert it for you. That’s why we show it as a NOP.
This part of the crt.s file sets up the various interrupt modes and stacks.

The label Reset_Handler is the beginning of the code. Recall that the first interrupt vector
at address 0x000000 loads the PC with the contents of the address Reset_Addr, which
contains the address of the startup code at the label Reset_Handler. This trick, used in the
entire vector table, loads a 32-bit constant into the PC and thus can jump to any address in
memory space.

 _vectors: ldr PC, Reset_Addr
 :
 Reset_Addr: .word Reset_Handler

Whenever the LPC2106 is reset, the instruction at 0x000000 is executed first; it jumps to
Reset_Handler. From that point, we are off and running!

The first part of the startup code above sets up the stacks and the mode bits.

The symbol _stack_end will be defined in the linker command script file demo2106.cmd.
Here is how it will be defined. Knowing that the Philips ISP Flash Loader will use the very
top 288 bytes of RAM for its internal stack and variables, we’ll start our application stacks at
0x4000FEE0.
(Note: 0x40010000 – 0x120 = 0x4000FEE0)

/* define a global symbol _stack_end, placed at the very end of RAM (minus 4 bytes) */
stack_end = 0x4000FEE0 – 4;

Working that out with the Windows calculator, the _stack_end is placed at 4000FEDC.

The code snippet that sets up the stacks and modes is a bit complex, so let’s explain it a
bit.

First we load R0 with the address of the end of the stack, as described above.

 ldr r0, =_stack_end

Now we put the ARM into Undefined Instruction mode by setting the MODE_UND bit in the
Current Program Status Register (CPSR). The four modes undefined, irq, abort and svc all
have their own private copies of R13 (sp) and r14 (link return). The FIQ mode has private
copies of registers R8 – R14. Thus, by writing R0 into the stack pointer sp (R13), it will use
0x4000FEDC as the initial stack pointer if we ever have processing of an undefined
instruction. By subtracting the undefined stack size (4 bytes) from R0, we’re limiting the
stack for UND mode to just 4 bytes.

 msr CPSR_c, #MODE_UND|I_BIT|F_BIT /* This puts the CPU in undefined mode */
 mov sp, r0 /* stack pointer for UND mode is 0x40000FEDC */
 sub r0, r0, #UND_STACK_SIZE /* Register R0 is now 0x4000FED8 */

Now we put the ARM into Abort mode by setting the MODE_ABT bit in the CPSR. As
mentioned above, abort mode has its own private copies of R13 and R14. We now set the
abort mode stack pointer to 0x4000FED8. Again by subtracting the abort stack size from
R0, we’re limiting the stack for ABT mode to just 4 bytes.

 msr CPSR_c, #MODE_ABT|I_BIT|F_BIT /* this puts CPU in Abort mode */
 mov sp, r0 /* stack pointer for ABT mode is 0x4000FED8 */
 sub r0, r0, #ABT_STACK_SIZE /* Register R0 is now 0x4000FED4 */

Now we put the ARM into FIQ (fast interrupt) mode by setting the MODE_FIQ bit in the
CPSR. As mentioned above, FIQ mode has its own private copies of R14 through R8. We
now set the abort mode stack pointer to 0x4000FED4. Again by subtracting the abort stack
size from R0, we’re limiting the stack for FIQ mode to just 4 bytes. We’re not planning to
support FIQ interrupts in this example.

 msr CPSR_c, #MODE_FIQ|I_BIT|F_BIT /* this puts CPU in FIQ mode */
 mov sp, r0 /* stack pointer for FIQ mode is 0x4000FED4
 sub r0, r0, #FIQ_STACK_SIZE /* Register R0 is now 0x4000FED0 */

Now we put the ARM into IRQ (normal interrupt) mode by setting the MODE_IRQ bit in the
CPSR. As mentioned above, IRQ mode has its own private copies of R13 and R14. We
now set the IRQ mode stack pointer to 0x4000FDE0. Again by subtracting the IRQ stack

size from R0, we’re limiting the stack for IRQ mode to just 4 bytes. We’re not planning to
support IRQ interrupts in this example.

 msr CPSR_c, #MODE_IRQ|I_BIT|F_BIT /* this puts the CPU in IRQ mode */
 mov sp, r0 /* stack pointer for IRQ mode is 0x4000FED0 */
 sub r0, r0, #IRQ_STACK_SIZE /* R0 is now 0x4000FECC */

Now we put the ARM into SVC (Supervisor) mode by setting the MODE_SVC bit in the
CPSR. As mentioned above, SVC mode has its own private copies of R13 and R14. We
now set the supervisor mode stack pointer to 0x4000FDDC. Again by subtracting the SVC
stack size(4 bytes) from R0, we’re sizing the stack for SVC mode to 4 bytes.

 msr CPSR_c, #MODE_SVC|I_BIT|F_BIT /* This puts the CPU in SVC mode */
 mov sp, r0 /* stack pointer for SVC mode is 0x4000FECC */
 sub r0, r0, #SVC_STACK_SIZE /* R0 is now 0x4000FEC8 */

The ARM “User” mode and the ARM “System” mode share the same registers and stack.
For this very simple example, we’ll run the application in “User” mode. Setting up the stack
for User mode also sets up the stack for System mode.

Now we put the ARM into USR (user) mode by setting the MODE_USR bit in the CPSR.
We now set the USR mode stack pointer to 0x4000FEC8.

 msr CPSR_c, #MODE_USR|I_BIT|F_BIT /* User Mode */
 mov sp, r0

To summarize the above operations, let’s draw a diagram of the stacks we just created.

Undefined mode stack

Abort mode stack

FIQ mode stack

IRQ mode stack

SVC mode

USR mode / SYS mode stack

Philips ISP Flash Loader
 Stack and variables

 (288. bytes)

(4 bytes)

(until it collides with

(4 bytes)

(4 bytes)

(4 bytes)

RAM

Stack grows downward

(4 bytes)

0x4000FFFF last address in internal

0x40010000

0x4000FEDC UND stack pointer

0x4000FED8 ABT stack pointer

0x4000FED4 FIQ stack pointer

0x4000FECC SVC stack pointer

0x4000FED0 IRQ stack pointer

0x4000FEE0 bottom of Philips ISP

0x4000FEC8 USR / SYS stack

RAM STACK USAGE

The next part of the startup file crt.s to investigate is the setup of the .data and .bss
sections, as shown below.

The .data section contains all the initialized static and global variables. The GNU linker will
create a exact copy of the variables in flash with the correct initial values loaded. The onus
is on the programmer to copy this initialized flash copy of the data to RAM.

The location of the start of the .data section in flash is defined by symbol _etext (defined in
the linker command script demo2106.cmd). Likewise, the location of the start and end of
the .data section in destination RAM is given by the symbols _data and _edata. Both of
these symbols are defined in the linker command script.

The .bss section contains all the uninitialized static and global variables. All we have to do
here is clear this area. Likewise, the location of the start and end of the .bss section in
destination RAM is given by the symbols _bss_start and _bss_end. Both of these symbols
are defined in the linker command script.

Two simple assembly language loops load the .data section in RAM with the initializers in
flash and clear out the .bss section in RAM.

The GNU linker specifies two addresses for sections, the Virtual Memory Address (VMA)
and the Load memory Address (LMA). The VMA is the final destination for the section; for
the .data section, this is the RAM address where it will reside. The LMA is where it will be
loaded in Flash memory, the exact copy with the initial values. The GNU Linker will sort this
out for us.

14 Description of the Main Program main.c

Now let’s look at the main program.

The main program starts out with a few function prototypes. Note that the interrupt routines
mentioned in the crt.s assembler program reside in the main() program. We’ve used the
GNU C compiler syntax that identifies the interrupt routines and makes sure that the
compiler will save and restore registers, etc. whenever the interrupt is asserted.

I’ve also included a few do-nothing variables, both initialized and uninitialized, to illustrate
that the compiler will put the initialized variables into the .data section and the uninitialized
ones into the .bss section.

We’re going to try to toggle a single
I/O bit, specifically P0.7 which is the
Olimex red LED. By the way, with
this hardware arrangement:

P0.7 = 1 // turn off LED
P0.7 = 0 // turn on LED

The Philips LPC2106 has 32 I/O pins, labeled P0.0 through P0.31. Most of these pins have
two or three possible uses. For example, pin P0.7 has three possible uses; digital I/O port,
SPI Slave Select and PWM output 2. Normally, you select which function to use with the
Pin Connect Block. The Pin Connect Block is composed of two 32-bit registers, PINSEL0
and PINSEL1. Each Pin Select register has two bits for each I/O pin, allowing at least three
functions for each pin to be specified.

For example, pin P0.7 is controlled by PINSEL0, bits 14 – 15. The following specification
would select PWM2 output.

 PINSEL0 = 0x00008000; // set PINSEL0 bits 14 – 15 to 01

Fortunately, the Pin Connect Block resets to zero, meaning that all port pins are General-
Purpose I/O bits. So we don’t have to bother with the Pin Select registers in this example.

We do have to set the I/O Direction for port P0.7, this can be done in this way.

 IODIR |= 0x00000080; // set IO Direction register, P0.7 as output
 // 1 = output, 0 = input

The ARM I/O ports are manipulated by register IOSET and register IOCLR. You never
directly write to the I/O Port! You set a bit in the IOSET register to set the port bit and you
set a bit in the IOCLR register to clear the port bit. This little nuance will trip up novice and
experienced programmers alike. Alert readers will ask; “What if both bits are set in IOSET
and IOCLR?” The answer is “Last one wins.” The last IOSET or IOCLR instruction will
prevail.

Why did ARM design the port bits this way? This scheme allows you to modify a bit without
perturbing the others!

To turn the LED P0.7 off, we can write:

 IOSET = 0x00000080; // turn P0.7 (red LED) off

Likewise, to turn the LED P0.7 on, we can write:

 IOCLR = 0x00000080; // turn P0.7 (red LED) on

As you can see, it’s fairly simple to manipulate I/O bits on the ARM processor.

To blink the LED, a simple FOREVER loop will do the job. I selected the loop counter
values to get a one half second blink on – off time.

 // endless loop to toggle the red LED P0.7
 while (1) {

 for (j = 0; j < 500000; j++); // wait 500 msec
 IOSET = 0x00000080; // red led off
 for (j = 0; j < 500000; j++); // wait 500 msec
 IOCLR = 0x00000080; // red led on
 }

This scheme is very inefficient in that it hog-ties the CPU while the wait loops are counting up.

The Initialize(); function requires some explanation.

We have to set up the Phased Lock Loop (PLL) and that takes some math.

Olimex LPC-P2106 board has a 14.7456 Mhz crystal

We'd like the LPC2106 to run at 53.2368 Mhz (has to be an even multiple of crystal, in this case 3x)

According to the Philips LPC2106 manual: M = cclk / Fosc where: M = PLL multiplier (bits 0-4 of
PLLCFG)
 cclk = 53236800 hz
 Fosc = 14745600 hz

Solving: M = 53236800 / 14745600 = 3.6103515625
 M = 4 (round up)

 Note: M - 1 must be entered into bits 0-4 of PLLCFG (assign 3 to these bits)
 The Current Controlled Oscillator (CCO) must operate in the range 156 Mhz to 320 Mhz

 According to the Philips LPC2106 manual: Fcco = cclk * 2 * P where: Fcco = CCO frequency

 cclk = 53236800 hz

 P = PLL divisor (bits 5-6 of PLLCFG)

 Solving: Fcco = 53236800 * 2 * P
 P = 2 (trial value)
 Fcco = 53236800 * 2 * 2
 Fcc0 = 212947200 hz (good choice for P since it's within the 156 mhz to 320 mhz range

 From Table 19 (page 48) of Philips LPC2106 manual P = 2, PLLCFG bits 5-6 = 1 (assign 1 to these bits)

 Finally: PLLCFG = 0 01 00011 = 0x23

 Final note: to load PLLCFG register, we must use the 0xAA followed 0x55 write sequence to the
PLLFEED register
 this is done in the short function feed() below

With the math completed, we can set the Phase Locked Loop Configuration Register
(PLLCFG)

 // Setting Multiplier and Divider values
 PLLCFG = 0x23;
 feed();

To set values into the PLLCON and PLLCFG registers, you have to write a two-
byte sequence to the PLLFEED register:

 PLLFEED = 0xAA;
 PLLFEED = 0x55;

This sequence is coded in a short function feed();
The net effect of the above setup is to run the ARM CPU at 53.2 Mhz.

Next we fully enable the Memory Accelerator module and set the Flash memory to
run at ¼ the clock speed. Now you see why some people prefer to execute out of
RAM where it’s much faster.

 // Enabling MAM and setting number of clocks used for Flash memory fetch
 // (4 cclks in this case)
 MAMCR=0x2;
 MAMTIM=0x4;

The clock speed of the peripherals is also run at 53.2 Mhz which is the full clock speed.

 // Setting peripheral Clock (pclk) to System Clock (cclk)
 VPBDIV=0x1;

In the final snippet of the main() code, you can see the dummy interrupt service
routines. They are just simple endless loops; we don’t intent to allow interrupts in
this simple example.

15 Description of the Linker Script demo2106_blink_flash.cmd

Let’s look now at the linker command script, demo2106_blink_flash.cmd. I’ve included
extensive annotation to make it very clear how the memory is organized.

The first order of business in the linker command script is to identify the memory
available, this is easy in a Philips LPC2106 – the RAM and FLASH memory are on-
chip and at fixed locations. Page 29 of the Philips LPC2106 User Manual shows
the physical memory layout.

On-chip static RAM is from
0x40000000 - 0x4000FFFF
For the LPC2106

On-chip static FLASH is from
0x00000000 - 0x0001FFFF
For the LPC2106

First we define an entry point; specifically _startup as defined in the assembler function
crt.s.

ENTRY(_startup)

The Linker command script uses the following directives to lay out the physical memory.

MEMORY
{
 flash : ORIGIN = 0, LENGTH = 128K /* FLASH ROM */
 ram_isp_low(A) : ORIGIN = 0x40000120, LENGTH = 223 /* variables used by Philips ISP */
 ram : ORIGIN = 0x40000200, LENGTH = 64992 /* free RAM area */
 ram_isp_high(A) : ORIGIN = 0x4000FFE0, LENGTH = 32 /* variables used by Philips ISP */
}

You might expect that we’d define only a flash and a ram memory area. In addition
to those, we’ve added two dummy memory areas that will prevent the linker from
loading code or variables into the RAM areas used by the Philips ISP Flash Utility
(sometimes called a boot loader). See page 180 in the Philips LPC2106 User
Manual for a description of the Boot Loader’s RAM usage.

As you’ll see in a minute, we’ll be moving various sections (.text section, .data
section, etc.) into flash and ram.

Note that we created a global symbol (all symbols created in the linker command
script are global) called _stack_end. It’s just located after the stack/variable area
used by the Philips ISP Flash Utility (boot loader) as mentioned above.

_stack_end = 0x4000FEDC;

Now that the memory areas have been defined, we can start putting things into
them. We do that by creating output sections and then putting bits and pieces of
our code and data into them.

We define below four output sections:

startup - this output section holds the code in the startup function, defined in crt.s

.text - this output section holds all other executable code generated by the compiler

.data - this output section contains all initialized data generated by the compiler

.bss - this output section contains all uninitialized data generated by the compiler

The next part of the Linker Command Script defines the sections and where they go in
memory.

The first thing done within the SECTIONS command is to set the location counter.

The dot means “right here” and this sets the location counter at the beginning to
0x000000.

 . = 0; /* set location counter to address zero */

Now we create our first output section, located at address 0x000000. This creates
a output section named “startup” and it includes all sections emitted by the
assembler and compiler named .startup. In this case, there is only one such
section created in crt.s.

This startup output section is to go into FLASH at address 0x000000. Remember
that the startup section has the interrupt vectors (must be placed at 0x000000) and
the startup code also sets the stacks, modes and copies the .data and .bss
sections.

 startup : { *(.startup) } >flash

Now we can follow the vector table and assembler startup code with all code
generated by the assembler and C compiler; this code is normally emitted in .text
sections. However, constants and strings go into sections such as .rodata and
.glue_7 so these are included for completeness. These code bits all go into FLASH
memory.

 .text : /* collect all sections that should go into FLASH after startup */
 {
 (.text) / all .text sections (code) */
 (.rodata) / all .rodata sections (constants, strings, etc.) */
 (.rodata) /* all .rodata* sections (constants, strings, etc.) */
 (.glue_7) / all .glue_7 sections */
 (.glue_7t) / all .glue_7t sections */
 _etext = .; /* define a global symbol _etext after the last code byte */
 } >flash /* put all the above into FLASH */

We follow the .text: output section (all the code and constants, etc) with a symbol
definition, which is automatically global in the GNU toolset. This basically sets the
next address after the last code byte to be the global symbol _etext (end-of-text).

There are two variable areas, .data and .bss. The initialized variables are
contained in the .data section, which will be placed in RAM memory. The big
secret here is that an exact copy of the .data section will be loaded into FLASH
right after the code section just defined. The onus is on the programmer to copy
this section to the correct address in FLASH; in this way the variables are
“initialized” at startup just after a reset.

The .bss section has no initializers. Therefore, the onus is on the programmer to
clear the entire .bss section in the startup routine.

Initialized variables are usually emitted by the assembler and C compiler as .data
sections.

 .data :
 {
 _data = .; // global symbol locates the start of .data section in RAM

 *(.data) // tells linker to collect all .data sections together

 _edata = .; // global symbol locates the end of .data section in RAM

 } >ram AT>flash // load data section into RAM, load copy of .data section
 // into FLASH for copying during startup.

Note first that we created two global symbols, _data and _edata, that locate the
beginning and end of the .data section in RAM. This helps us create a copy loop in
the crt.s assembler file to load the initial values into the .data section in RAM.

The command >ram specifies the Virtual Memory Address that the .data section is
to be placed into RAM (think of it as the final destination in RAM and all code
references to any variables will use the RAM address.

The command AT >flash specifies the load memory address; essentially an exact
copy of the RAM memory area with every variable initialized placed in flash for
copying at startup.

You might say “why not let the Philips boot loader load the initial values of the
.data section in RAM directly from the hex file?” The answer is that would work
once and only once. When you power off and reboot your embedded application,
the RAM values are lost.

The copy of the .data area loaded into flash for copying during startup is placed by
the GNU linker at the next available flash location. This is conveniently right after
the last byte of the .prog section containing all our executable code.

The .bss section is all variables that are not initialized. It is loaded into RAM and
we create two global symbols _bss_start and _bss_end to locate the beginning
and end for clearing by a loop in the startup code.

 .bss :
 {
 _bss_start = .;
 *(.bss)
 } >ram

 . = ALIGN(4);
}
 _bss_end = . ;
 _end = .;

Now let’s diagram just where everything is in RAM and FLASH memory.

Unused RAM RAM

.data variables

.bss uninitialized variables

stacks

0x40000200

0x4000FFFC

0x40010000

Low RAM used by Philips ISP
0x40000000

0x40000218

High RAM used by Philips ISP
0x4000FEE0

0x40000234

0x000000

FLASH

Vector Table

Startup Code

Main()
Feed()

Initialize()

copy of .data variables

0x000020

Constants, strings, etc.
0x000268

0x020000

Unused FLASH

16 Description of the Makefile

The makefile is the last source file we need to look at. I built the makefile to comply
with the GNU make utility and be as simple as possible.

The general idea of the makefile is that a target (could be a file) is associated with
one or more dependent files. If any of the dependent files are newer than the
target, then the commands on the following lines are executed (to recompile, for
instance). Command lines are indented with a Tab character!

 main.o: main.c
 arm-elf-gcc -I./ -c -O3 -g main.c

In the example above, if main.c is newer than the target main.o, the command or
commands on the next line or lines will be executed. The command arm-elf-gcc will
recompile the file main.c with several compilation options specified. If the target is

up-to-date, nothing is done. Make works its way downward in the makefile, if
you’ve deleted all object and output files, it will compile and link everything.

GNU make has a helpful “variables” feature that helps you reduce typing. If you define the
following variable:

 CFLAGS = -I./ -c -fno-common -O3 -g

You can use this multiple times in the makefile by writing the variable name as follows:

 $(CFLAGS) will substitute the string -I./ -c -O3 -g

Therefore, the command-

 arm-elf-gcc $(CFLAGS) main.c

is exactly the same as

 arm-elf-gcc -I./ -c -O3 -g main.c

Likewise, we can replace the compiler name arm-elf-gcc with a variable too.

 CC = arm-elf-gcc

Now the command line becomes

 $(CC) $(CFLAGS) main.c

Now our “rule” for handling the main.o and main.c files becomes:

main.o: main.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) main.c

Commands MUST be
indented with a TAB
character!

It’s worth emphasizing that forgetting to insert the TAB character before the
commands is the most common rookie mistake in using the GNU Make system.

The compilation options being used are:

-I./ = specifies include directories to search first (project directory in this case)

-c = do not invoke the linker, we have a separate make rule for that

-fno-common = gets rid of a pesky warning

-O3 = sets the optimization level (Note: set to –O0 for debugging!)

-g = generates debugging information

The assembler is used to assemble the file crt.s, as shown below:

crt.o: crt.s
 @ echo ".assembling"
 $(AS) $(AFLAGS) crt.s > crt.lst

In the example above, if the object file crt.o is older than the dependent assembler
source file crt.s, then the commands on the following lines are executed.

If we expand the make variables used, the lines would be:

crt.o: crt.s
 @ echo ".assembling"
 arm-elf-as -ahls -mapcs-32 -o crt.o crt.s > crt.lst

The > crt.lst directive creates a assembler list file.

The assembler options being used are:

-ahls = listing control, turns on high-level source, assembly and symbols

-mapcs-32 = selects 32-bit ARM function calling method

-o crt.o = create an object output file named crt.o

The GNU linker is used to prepare the output from the assembler and C compiler for
loading into Flash and RAM, as shown below:

main.out: crt.o main.o demo2106_blink_flash.cmd
 @ echo "..linking"
 $(LD) $(LFLAGS) -o main.out crt.o main.o

If the target output file main.out is older than the two object files or the linker
command file, then the commands on the following lines are executed.

The Linker options being used are:

-Map main.map = creates a map file

-T demo2106_blink_flash.cmd = identifies the name of the linker script file

Note that I’ve kept this GNU makefile as simple as possible. You can clearly see the
assembler, C compiler and linker steps. They are followed by the objcopy utility that
makes the hex file for the Philips ISP boot loader and an objdump operation to give
a nice file of all symbols, etc.

17 Compiling and Linking the Sample Application

OK, now it’s time to actually do something. First, let’s “Clean” the project; this gets
rid of all object and list files, etc. Click on “Project – Clean …” and fill out the Clean
dialog window.

You can see the results of the “Clean” operation in the Console window at the bottom.
Expect to see some warnings if there isn’t anything to delete.

To build the project, click on “Project – Build All”. Since we deleted all the object files and
the main.out file via the clean operation, this “Build-all” will assemble the crt.s startup file, C
compile the main.c function, run the linker and then run the objcopy utility to make a hex
file suitable for downloading with the Philips ISP Flash Utility.

We can see the results in the Console Window at the bottom.

18

18 Setting Up the Hardware

For this tutorial, we’ll be using the Olimex LPC-P2106 Prototype Board. Connect
a straight-through 9-pin serial cable from your computer’s COM1 port to the DB-9
connector on the Olimex board. Attach the 9-volt power supply to the PWR
connector. Install the BSL jumper and the JTAG jumper.

DB-9
Serial Port

COM1

Short the BSL
jumper to download
and program into
flash.

Remove the BSL
jumper to execute

You can use a
standard 9-pin PC
serial cable to
connect COM1 to the
Olimex board.

RESET Button

To run the Philips LPC2000 Flash Utility, it’s easiest to just click on the “External Tools”
button and its down arrow to pull-down the available tools. Click on “LPC2000 Flash
Utility” to start the Philips Boot Loader.

The Philips LPC2000 ISP Flash Programming will start up.

Now fill out the LPC2000 Flash Utility screen. Browse the workspace for the main.hex file.
Set the Device to LPC2106. Set the crystal frequency to 14746, as per the Olimex
schematic. The default baud rate, COM port and Time-out are OK as is.

Now click on “Upload to Flash” to start the download.

The Philips ISP Flash Utility will now ask you to reset the target system. This is the tiny
RST button near the CPU chip.

The download will now proceed; you’ll see a blue progress bar at the bottom and then the
status line will say “File Upload Successfully Completed”.

Remove the BSL (boot strap loader) jumper and hit the RST button.

Remove the
BSL jumper

Your application should start up and the LED will start blinking.

To prove that I am as honest as the sky is blue, here it is blinking away!

OK, I admit it; this photo has the reliability of a Bigfoot video!

19 Create a New Project to Run the Code in RAM

Now we will create a new project that will run the blinker code in RAM. Only minor
modifications to three files are required. We will show how to run the application
using the Philips ISP flash utility. Later, we’ll show how to use this very same RAM-
based application with the Eclipse/CDT debugger and a Wiggler JTAG interface.

Using the techniques previously discussed, create a new project named
demo2106_blink_ram.

Switch to the C/C++ Perspective and you will see that there are now two projects, although
the new one contains no files.

Now using the “File Import” procedure described earlier, fetch the source files for the
project demo2106_flash_ram included in the zip distribution for this tutorial.

 RAM,

The files we import are: crt.s
 demo2106_blink_ram.cmd
 lpc210x.h
 main.c
 makefile.mak

Now if you “Clean and Build” you should see a completed project with all the resultant files,
as shown below.

20 Differences in the RAM Version

File CRT.S

In the startup assembler file, I used a simple trick to move the startup code away from the
vectors to ensure that it doesn’t encroach on the Philips ISP Flash Loader low RAM area.

Remember that the entire project, code and variables, will be loaded into RAM starting at
address 0x40000000. The location counter is advanced by the directive .=.+0x1C0 to push

the Reset_Handler to address 0x40000200. This leaves a hole where the Philips ISP Flash
Utility will use the low RAM. There are other ways to do this.

File MAIN.C

There is just one extra line of C code in the main program. It directs the LPC2106 to re-map
the interrupt vectors to RAM at 0x40000000.

Since we are not using any interrupts in this example, this addition does not really
matter. I’ve just added it for completeness; you should always do this when
devising a project to run in RAM.

After you follow the next steps and get the application to execute out of RAM, you
can run a little experiment and comment out the MEMMAP = 0x02; line. It will still
run OK.

The reason for that is two-fold. First, we don’t use interrupts in this example.
Second, we use the Philips ISP Flash Loader to force the CPU to start at the
address of Reset_Handler; which is at 0x40000200. This bypasses using the
RESET vector at 0x4000000 to start the application.

File DEMO2106_BLINK_RAM.CMD

The entire project, both code and variables, is going to be loaded into RAM.
Therefore, there are a few changes in the Linker Command Script file
demo2106_blink_ram.cmd.

I added quite a bit of annotation above to make it very clear how the memory (flash and
ram) is organized.

Above I defined two memory areas for flash and RAM, consistent with the LPC2106
memory map. Of course, we’re going to load everything (code and variables) into RAM!

Note that I also created a global symbol, _stack_end, that is used in the startup routine to
build the various stacks. The address is positioned just after the stacks and variables used
by the Philips ISP Flash Utility.

Above is the final part of the Linker Command Script. Notice that everything is loaded into
RAM.

You might ask, “Do we still copy the .data section initializers?” I left the copy operation
intact in file CRT.S but it now essentially copies over itself (wasteful). I wanted to keep
things very similar. You could delete the .data initializer copy code in crt.s to save space.

You might also ask, “Do we still clear the .bss section?” The answer is absolutely yes, RAM
memory powers on into an unknown state. We want all uninitialized variables to be zero ar
start-up. Of course, stupid programmers rely on uninitialized variables to be zero at boot-
up, this is how they get into trouble with uninitialized variables (not all compilers do this
automatically).

At this point, if you haven’t cleaned and built the project, do it now.

Make sure the BSL jumper is installed.

Now use the “External Tools” toolbar button to find the Philips ISP Flash Utility and start it.
To make sure that we are not fooling ourselves, click on “Erase” to clear the flash memory.

Now we can be sure that the blinking LED is not the Flash application running.

Click on “Buffer – RAM Buffer Operations.”

The RAM Buffer screen now appears. Click on “Load Hex File.” This is just an operation
that fetches the hex file and puts it into the Philips ISP Flash Utility.

Notice that the button titled “Run from Address” has the value &H40000200 in it. This is
thanks to the ENTRY(Reset_Handler) directive in the linker command script file. The
Philips boot loader will simply load 0x40000200 into the PC register and let her rip!

When you click on the “Load Hex File” button, the following dialog will be presented.

Browse for the main.hex file in the project directory and click “Open”.

The following warning is presented. Since I advanced the location counter past the low
RAM area used by Philips, it still thinks that there’s code in there. If I had elected to make
the interrupt vectors a separate section, I could have avoided this warning.

It will still execute OK, of course, since the hex file has no bytes defined for the area where
we advanced the program counter past the Philips ISP low RAM usage.

Now click on the “Upload to RAM” button to load the hex file into the LPC2106 RAM
memory.

You will see a “progress bar” at the bottom of the screen and it will indicate that the
operation has completed.

You do NOT have to remove the BSL jumper. Click on the “Run from Address” button to
execute the program.

Your application should blink, just like the Flash EPROM version did. Time for the Bigfoot
picture!

 IT BLINKS!

21 Debug the RAM Project

The previous exercise, running the RAM project from the Flash Utility, was of
academic interest but essentially of no practical value. Well, it is kind of cool that
you can do that with a flash utility.

Eclipse/CDT interfaces seamlessly to the GDB debugger that is an integral part of
the GNU tool chain. When you click on the “Debug” button, you will be able to
watch the execution of your program graphically as it goes from breakpoint to
breakpoint. You can park the cursor over a variable name and see its current value
(assuming that execution has stopped, of course). You’ll be able to look at
structured variables, see the ARM registers and have the ability to modify variables
and registers.

We will need the following hardware setup:

LPT1

The BSL jumper
generally doesn’t
matter while using
JTAG

Olimex ARM JTAG Adapter

20-pin
JTAG
Port

Install the Debug
JTAG jumper while
running from RAM

The Olimex ARM JTAG Adapter is a clone of the Macraigor Wiggler JTAG
interface. It costs about $19.95 and all fits into a DB-25 shell. I bought a straight-
through printer cable from my local computer retailer and fitted it from the LPT1
printer port to the ARM JTAG Wiggler. The Wiggler was then fitted to the 20-pin
JTAG header on the Olimex LPC-P2106 board.

The red stripe on the ribbon cable is pin 1 and should be nearest the power plug.

The Debug JTAG jumper should be fitted. It doesn’t matter if the BSL jumper is installed or
not. Make all these connections with the power off.

A. Blunt Talk About the Wiggler

Let’s talk bluntly about the Wiggler. The Wiggler is one of many products from the
Canadian company Macraigor. It connects the parallel port of your PC to the 20-pin JTAG
header on the Olimex LPC-P2106 board. It is just a simple level shifter and a transistor.
Macraigor charges $150 for it; the Olimex clone is about $19.

There are several schematic diagrams on the web for the Wiggler; notably Leon Heller has
one on the LPC2000 message board on Yahoo. You could build your own but I doubt you’d
save that much money after paying the shipping from Digikey and the gas to drive to Radio
Shack. The Olimex version is a fair deal.

Obviously the Macraigor Company is not happy about all these clones running about, so
recently they slipped an impediment into the works. The latest version of OCDremote; their
free JTAG server for the Wiggler and other products, is expecting a connection (short
circuit) between pins 8 and 15 of the LPT1 printer port. This has made a lot of people fail.

Olimex has revised their design and modified their stock of Wigglers to make this
connection, but there are large numbers of the device out there that don’t have this
modification (like my Olimex Wiggler).

Use an ohmmeter on the 25-pin printer connector on the Wiggler to see if these two pins
are connected. If not, you can easily disassemble the Olimex Wiggler and tack-solder a
jumper to do the job. Again, you must connect pin 8 to pin 15.

Pin 1

Pin 8

Pin 15

Pin 25

I used that 30 gauge Radio Shack blue Teflon coated hookup wire and a microscope to do
the soldering above. If you have a good magnifier; the DB-25 pins on the wiggler have the
pin numbers embossed in the white plastic above and below the rows of pins.

We’re not quite finished with our Wiggler suffering. There’s the final issue of the PC Printer
port mode. Most modern PCs, like my new Dell, have the Printer Port defaulted to “ECP”
mode.

The Wiggler will not work with the printer port configured for ECP mode.

The Macraigor web site has a FAQ with the following citation:

What mode must my parallel port be in?

As far as the parallel port is concerned, a Wiggler is a simple uni-
directional device. It will work with the parallel port in any mode
EXCEPT "ECP". It will NOT work in ECP mode at all.

The Raven works best with a parallel port in EPP mode. It may work
in ECP mode. If the parallel port is in an older mode, such as uni-
directional, AT, or compatible, the Raven will work but slower.

Remember, the mode is set in the CMOS bios of your computer.

On my Dell Dimension Desktop PC, the CMOS setup can be entered if you hit the F2 key
as the machine boots up. By maneuvering around the CMOS setup, you can find the
Parallel Port setup and see what mode it is set up as. If it’s ECP mode, change it to EPP
mode, as I did in the screen photograph below. Save the CMOS setup and exit. My printer
is a USB device, so this action didn’t effect my printer operation.

Let’s review the hardware setup one more time.

Power plug from
9 volt wall wart
power supply

No need to
unplug the
serial cable

Doesn’t matter
if the BSL
jumper is
installed or not.

The Debug JTAG
jumper MUST be
installed

Red stripe on ribbon
cable must be next to
Debug JTAG jumper and
the power plug.

Power up the Olimex LPC-P2106 board and press the RST button for good luck!

B. Final Preparations Before Starting Eclipse Debugger

Before we start the Eclipse Graphical Debugger, I should mention that
debuggers absolutely hate compiler optimization. This one is no different. We
have been compiling with –O3 and you will find some strange things happening
when you single-step at that optimization level.

Just to be sure, let’s turn off optimization. Go to the makefile and change the
setting to –O0 and rebuild!

File: makefile.mak

Turn off compiler
optimization by setting
compiler flag to:

-O0 - no optimization

C. Create a Debug Launch Configuration

The first order of business is to set up a “debug launch configuration.” The
quickest way to get to the “debug launch configuration” screen is to click on the
“insect” button (insect – bug – get it?). Specifically, click on the down arrowhead to
bring up the debug pull-down menu.

Click on down
arrowhead to
get the pull-
down menu

Click on the “Debug …” selection in the debug pull-down list to bring up the Debug
configuration screen.

In the “Debug Launch Configuration” screen below, you can see the Zylin modification.
Note that one of the possible debug configuration types is now “Embedded debug
launch.”

You will tend to create a separate “Embedded debug launch” configuration for every
project you create; it’s very convenient for people who have multiple projects going on at
the same time.

Click on the Zylin “Embedded debug launch” configuration and then “New” to get started.

Zylin added
this debug
configuration

In the “Main” tab, set the name to anything you like and the project to
“demo2106_blink_ram.” I was, of course, lazy and made the debug configuration
name the same as the project. Set the C/C++ Application to “main.out.” Main.out
is an arm-elf format file that has the executable and debug information within the
file.

Under the “Debugger” tab, use the “browse” button to set the “GDB debugger” text

window to “c:\program files\GNUARM\bin\arm-elf-gdb.exe” and check the box that
instructs the debugger to stop at main() on startup.

Under the “commands” tab, enter the following two GDB commands to run at startup:
 target remote localhost:8888
 load

The “target remote” command specifies that the protocol used to talk to the application
is “GDB Remote Serial” protocol with the serial device being a internet socket called
localhost:8888 (the default specification for the Macraigor OCDremote driver).

Target Remote supports the GDB “load” command; the specific download file
(main.out) was specified above in the “main” tab. In this case, the “load” command will
download the executable code into RAM and the Eclipse/GDB debugger will use the
symbol information contained within the “main.out” file to locate all statements and
variables.

When we debug FLASH programs, we can’t use the “load” command since the GDB
debugger cannot program FLASH memory. In this case, we will use the Philips Flash
Utility to burn the executable into FLASH and substitute the GDB command “symbol-
file main.out” to provide the debugger with the statement locations and symbol
information. There is more on this later in the tutorial.

The “source” tab can be left at its default settings.

Likewise, the “common” tab can be left at its default setting. Click on “apply” and then
“Close” to complete specification of the debug launch configuration.

D. Switch to Debug Perspective

What you see on the screen when using Eclipse is called a “perspective” and up to now, we
have been using the “C/C++” perspective. Once the application has been built, we must
switch to the “Debug” perspective to debug it.

One way is to change the perspective in the “Window” pull-down menu as shown below.

It’s also convenient to click on the “Debug Perspective” button on the upper right of the
Eclipse screen. Below is the “Debug” perspective.

You can drag this s-
shaped edge to expose
all the available
perspectives.

E. Start the OCDRemote utility

The Macraigor OCDRemote utility must be started before the Debugger is launched.

Remember that we set up the OCDRemote as an External Tool. It’s easily started by
clicking on the pull-down arrow of the External Tool button. Note the little red toolbox on
that button.

The well-known problem of the Wiggler/OCDRemote combination is that it doesn’t always
start. Below is an example of where it does start properly.

There it is!

No error messages in the console!

When everything works, the GDB Debugger communicates using the GDB Serial Protocol
to an internet socket called localhost:8888, we specified this in our Embedded Debug
Launch Configuration (the “command” tab).

The Macraigor OCDRemote DLL intercepts the GDB Serial Protocol via the internet socket
and converts it into JTAG signals on the LPT1 printer port connector. The Wiggler device
merely translates the JTAG signals to 3.3 volts for use with the Philips LPC2106
microprocessor.

The GDB “load” command, shown above, downloads the executable into RAM.

Here is an example of OCDRemote failing.

Note that it says
“terminated”

Oooops, got an error
message in the console!

If you have trouble getting OCDremote to start; try these remedies:

• You may have accidentally started multiple copies of OCDremote.
Bring up the Windows Task Manager (ctrl-alt-del) and search the list
of running tasks. If there are multiples of ocdremote.exe, terminate
all of them and start over.

• Keep trying; I’ve clicked it ten times before it started (this is simply Voodoo).

• Make sure your computer is not running cpu-intensive applications in the

background, such as internet telephone applications (my beloved SKYPE for
example). The OCDRemote/wiggler system does “bit-banging” on the LPT1 printer
port which is fairly low in the Windows priority order.

For Windows XP users, here is a simple way to get rid of all those background
programs. Click “Start – Help and Support – Use Tools… - System Configuration
Utility – Open System Configuration Utility – Startup Tab”

Click on “Disable All”. Windows will ask you to re-boot and the PC will restart with
none of the start-up programs running. Use the same procedure to reverse this
action.

• Try a lower speed (JTAG clock rate). The slowest speed is 8 (4 kHz) whilst the

fastest speed is 1 (380 kHz).

• Go to bed; let it win tonight.

F. Start the Debugger

Our “Debug Configuration” has been defined and we’ve switched to the Debug perspective.
We started the OCDRemote utility and verified that it’s working.

Now is the time to start the debugger. Since the “Embedded Debug Launch” configuration
“demo2106_blink_ram” was the last configuration accessed above, clicking on the “Bug”
button will suffice. If you’re not sure, use the pull-down” arrow to see exactly what
configuration will be started.

The Debugger will start up and execute the two commands specified earlier. It will connect to the
target via JTAG and start a download of the application. You can watch the progress bars at the
lower right of the screen.

When downloading completes, the Debugger is in “idle” mode with the executable code
loaded into RAM.

Either one
will start the
Debugger.

Watch the download
progress bars here.

You can see above in the “console” view that the debugger executed our two commands
specified in the launch configuration earlier. It followed that with the download of the .text
and .data sections.

The downloading can be a little slow. You may want to experiment with a faster speed
setting for the Olimex wiggler.

The debugger is “idle”, waiting for you to issue a command.

G. Run to Main

The first move is to start the application. It will stop at the main() program; we specified this
earlier in our launch configuration setup.

In the Debug view, click on the green arrow to start execution of the application..

The application will start, run all of our ARM initialization code and stop at the start of
main(). Note that in the Debug view, the Thread[0] is suspended at line 46 of main. With
embedded cross development, we only have one execution thread. Code targeted for the
PC platform can have multiple threads of execution.

Run to Main()
stopped here

H. Components of the DEBUG Perspective

Before operating the Eclipse debugger, let’s review the components of the Debug
perspective.

Debug
Control

Variable display
Breakpoint summary
Register display, etc.

C Code Display

Assembler
Display

GDB Debugger
Command Window

I. Debug Control

The Debug view should be on display at all times. It has the Run, Stop and Step buttons.
The tree-structured display shows what is running; in this case it’s the OCDRemote utility
and our application, shown as Thread[0].

Notes: When you resume execution by clicking on the Run/Continue button, many of

the buttons are “grayed out.” Click on “Thread[0]” to highlight it and the buttons
will re-appear. This is due to the possibility of multiple threads running
simultaneously and you must choose which thread to pause or step. In our ARM
development system, we only have one thread.

 All of these views, such as the Debug Control view above,

can be maximized to full-screen, minimized or returned to
multi-pane by the “maximize” and “minimize” buttons at the
upper right corner.

Run-to-Main() and
Continue Button.

Stop Button

Kill Button
This stops
everything

Clear Button
Erases debug
view after Kill

Step
Into

Step
Over

Step
Out

Switch between C-
language stepping
and assembler
stepping

Tree-view shows
what’s running.

J. Run and Stop with the Right-Click Menu

The easiest method of running is to employ the right-click menu. In the example below, the
blue arrowhead cursor indicates where the program is currently stopped.

To go to the IOCLR = 0x00000080; statement several lines away, click on the line where
you want to go (this should highlight the line and place the cursor there).

Now right click on that line. Notice that the rather large pop-up menu has a “Run to
Line” option.

When you click on the “Run to line” choice, the program will execute to the line the cursor
resides on and then stop (N.B. it will not execute the line).

We were stopped here.

Click on this
line first.

Right-click next to bring
up this pop-up menu

Click on “Run to line”
to execute to the
clicked line.

You can right-click the “Resume at Line” choice to continue execution from that point. If
there are no other breakpoints set, then the Blink application will start blinking continuously.

We stopped here

Note: this line WAS
NOT executed!

K. Setting a Breakpoint

Setting a breakpoint is very simple; just double-click on the far left edge of the line. Double-
clicking on the same spot will remove it.

Click in the left margin area to
set/clear breakpoints.

Now click on the “Run/Continue” button in the Debug view.

Assuming that this is the only breakpoint set, the program will execute to the breakpoint line
and stop.

Since this is a RAM application and breakpoints are “software” breakpoints, there can be a
nearly unlimited number of breakpoints set.

The breakpoints can be more complex. For example, to ignore the
breakpoint 5 times and then stop, right-click on the breakpoint symbol
on the far left.

This brings up the pop-up menu below and click on “Breakpoint Properties …”.

Stops before
executing this
line.

In the “Properties for C/C++ breakpoint” window, set the Ignore Count to 5. This means
that the debugger will ignore the first five times it encounters the breakpoint and then stop.

To test this setup, we must terminate and re-launch the debugger.

Get used to this sequence:

Kills both the OCDRemote and the debugger

Erases the terminated processes in the tree

Start the OCDRemote; keep trying until it starts
properly.

Launch the debugger and download the
application

Start and run to main()

Now when you hit the Run/Continue button again, the program will blink 5 times and stop.
Don’t expect this feature to run in real-time. Each time the breakpoint is encountered the
debugger will automatically continue until the “ignore” count is reached. This involves quite
a bit of debugger communication at a very slow baud rate.

In addition to specifying a “ignore” count, the breakpoint can be made conditional on an
expression. The general idea is that you set a breakpoint and then specify a conditional
expression that must be met before the debugger will stop on the specified source line.

In this example, a line has been added to the blink loop that increments a variable “x”.
Double-click on that line to set a breakpoint.

Right click on the breakpoint symbol and select “Breakpoint Properties”. In the Breakpoint
Properties window, set the condition text box to “x == 9”.

A nice feature of Eclipse debugging is that you can edit the source file within the debugger
and rebuild the application without leaving the debugger. Of course, you need to kill the
OCDRemote and the Debugger and restart the download after the build; as specified

above. This is necessary for this release of CDT because the “Restart” button appears
inoperative. The advantage is that you don’t have to change the Eclipse perspective – just
stay in the Debug perspective.

Start the application and it will stop on the breakpoint line (this will take a long time, 9
seconds on my Dell computer). If you park the cursor over the variable x after the program
has suspended on the breakpoint, it will display that the current value is 9.

If you specify that it should break when x == 50000, you will essentially wait forever. The
way this works, the debugger breaks on the selected source line every pass through that
source line and then queries via JTAG for the current value of the variable x. When
x==50000, the debugger will stop. Obviously, that requires a lot of serial communication at
a very slow baud rate. Still, you may find some use for this feature.

In the Breakpoint Summary view, shown directly below, you can see all the breakpoints you
have created and the right-click menu lets you change the properties, remove or disable
any of the breakpoints, etc. The example below shows one conditional breakpoint that will
stop on source line 64 only if the variable x is equal to 9.

Debugger stopped on
this line only when x == 9

L. Single Stepping

Single-stepping is the single most useful feature in any debugging environment. The debug
view has three buttons to support this.

Step Into

If the cursor is at a function call, this will step into the function.
It will stop at the first instruction inside the function.

If cursor is on any other line, this will execute one instruction.

Step Over

If the cursor is at a function call, this will step over the function. It will
execute the entire function and stop on the next instruction after the
function call.

If cursor is on any other line, this will execute one instruction

Step Out Of

If the cursor is within a function, this will execute the remaining
instructions in the function and stop on the next instruction after the
function call.

This button will be “grayed-out” if cursor is not within a function.

Step Into Step Over Step Out Of

As a simple example, restart the debugger and set a breakpoint on a line in the Initialize()
function. Hit the Start button to go to that breakpoint.

Click the “Step Over” button The debugger will execute one instruction.

Click the “Step Into” button The debugger will enter the feed() function.

Notice that the “Step Out Of” button is illuminated. Click the “Step Out Of” button
The debugger will execute the remaining instructions in feed() and return to just after the
function call.

Set a breakpoint here.

M. Inspecting and Modifying Variables

Before proceeding on this topic, let’s add a couple of structured variables to the simple
blinker test program. After rebuilding the application and re-launching the debugger, we can
inspect variables once a breakpoint has been encountered.

The simple way to inspect variables is to just park the cursor over the variable name in the
source window; the current value will pop up in a tiny text box. Execution must be stopped
for this to work; either by breakpoint or pause.

For a structured variable, parking the cursor over the variable name will show the values of
all the internal component parts.

Another way to look at the local variables is to inspect the “Variables” view. This will
automatically display all automatic variables in the current stack frame. It can also display
any global variables that you choose. For simple scalar variables, the value is printed next
to the variable name.

If you click on a variable, its value appears in the summary area at the bottom. This is
handy for a structured variable or a pointer; wherein the debugger will expand the variable
in the summary area.

Text cursor is
parked over the
variable “z”

Text cursor is
parked over the
variable “Access”

The Variables view can also expand structures. Just click on any “+” signs you see to
expand the structure and view its contents.

Click on this

The summary area will
show what the pointer is
referencing.

You can click on “+” signs
to expand a structure
variable and view its
contents.

If you click on the “Show Type Names” button, each variable name will be
displayed with its type, as shown below.

Global variables have to be individually selected for display within the “Variables” view.

Use the “Add Global Variables” button to open the selection dialog.

Check the variables you want to display and then click “OK” add them to the Variables
view,

Note: not sure what
the extra variables
are. Might be a CDT
bug?

You can easily change the value of a variable at any time. Assuming that the debugger has
stopped, click on the variable you wish to change and right click. In the right-click menu,
select “Change Value…” and enter the new value into the pop-up window as shown below.
In this example, we change the variable “c” to 52.

Now the “Variables” view should show the new value for the variable “c”. Note that it has
been colored red to indicate that it has been changed.

N. Watch Expressions

The “Expressions” view can display the results of expressions (any legal C Language
expression). Since it can pick any local or global variable, it forms the basis of a
customizable variable display; showing only the information you want.

For example, to display the 6th character of the name in the structured variable “Access”,
bring up the right-click menu and select “Add Watch Expression…”.

Enter the fully qualified name of the 6th character of the name[] array.

Note that it now appears in the “Expressions” view.

You can type in very complicated expressions. Here we defined the expression (i + z)/h

O. Assembly Language Debugging

The Debug perspective includes an Assembly Language view.

If you click on the Instruction Stepping Mode toggle button in the Debug view,
the assembly language window becomes active and the single-step buttons apply to the
assembler window. The single-step buttons will advance the program by a single assembler
instruction. Note that the “Disassembly” tab lights up when the assembler view has control.

Note that the debugger is currently stopped at the assembler line at address 0x400003f0.

If
we

click the “Step Over” button in the Debug view, the debugger will execute one assembler
line.

The “Step Into” and “Step Out Of” buttons work in the same was as for C code.

P. Inspecting Registers

Unfortunately, parking the cursor over a register name (R3 e.g.) does not pop up its current
value. For that, you can refer to the “Registers” view.

Click on the “+” symbol next to Main and the registers will appear. The Philips LPC2106
doesn’t have any floating point registers so registers F0 through FPS are not applicable.

 then

he “Format” option permits you to change the numeric format to hexadecimal, for
xample.

If you don’t like a particular register’s numeric format, you can click to highlight it and
bring up the right-click menu.

T
e

Now the register display shows r4 in hexadecimal format.

Of course, the right click menu lets you change the value of any register. For example, to
change r7 from zero to 0x1F8, just select the register, right-click and select “Change
Value…”

Now the value for r7 has been changed to 0x1F8.

 care! Make sure you
now what you are doing before tampering with the ARM registers.

Memory

figuration. You can add it by clicking “Window – Show View – Memory”

s shown below.

e.
e or more “memory

onitors”. To create a memory monitor, click on the “ ” symbol.

It goes without saying that you had better use this feature with great
k

Q. Inspecting

Viewing memory is a bit complex in Eclipse. First, the memory view is not part of the default
debug launch con
a

The memory view appears in the “Console” view at the bottom of the Debug perspectiv
At this point, nothing has been defined. Memory is displayed as on

+m

Enter the address 0x400004f4 (address of the string “The Rain in Spain”) in the dialog box.

The memory monitor is created, although it defaults to 4-byte display mode. The display of
the address columns and the associated memory contents is called a “Rendering”.

The address 0x400004F4 is called the Base Address; there’s a right-click menu option
“Reset to Base Address” that will automatically return you to this address if you scroll the
memory display.

There’s also a “Go to Address…” right-click menu option that will jump all over memory for
you.

By right-clicking anywhere within the memory rendering (display area), you can select
“Column Size – 1 unit”.

This will repaint the memory rendering in Byte format.

Now we will add a second rendering that will display the memory monitor in ASCII.

Click on the “Toggle Split Pane” button to create a second rendering pane.

Pick “ASCII” display for the new rendering.

Click on the “Add Rendering(s)” button to create an additional ASCII memory display.

Now we have a split pane display of the memory in hex and ASCII.

Click on the “Link Memory Rendering Panes” button.

This means that scrolling one memory rendering will automatically scroll the other one in
synchronism.

Click on the “Toggle Memory Monitors Pane” button.

This will expand the display erasing the “memory monitors” list on the left.

Personally, I think this Eclipse memory display is a bit complex. However, it allows you to
define many “memory monitors” and clicking on any one of them pops up the renderings
instantly. It’s like so many things in life, once you learn how to do it; it seems easy!

22 Debug the FLASH Project

Debugging an application configured for FLASH execution is not only possible, but fairly
easy. It’s a two-step process; use the Philips LPC2000 Flash Utility to burn the
application into onboard FLASH memory and then run the Eclipse/GDB debugger to
control execution.

A. Hardware Setup

The following hardware setup is required.

LPT1

The BSL jumper is installed
while programming FLASH.

The BSL jumper is removed
while debugging FLASH.

Olimex ARM JTAG Adapter
 (WIGGLER)

20-pin
JTAG
Port

Install the Debug
JTAG jumper while
debugging FLASH

COM1

The only thing to remember about the hardware setup is to fit the bootstrap loader jumper
(BSL) while programming the FLASH using the Philips LPC2000 Flash Utility and to
conversely remove the BSL jumper while debugging.

To ensure that the hardware is set up correctly for FLASH debugging, refer to the
photograph below.

Power plug from
9 volt wall wart
power supply

serial cable
attached to
COM1

BSL jumper is installed when
programming FLASH memory.

BSL jumper is removed while
debugging.

The Debug JTAG
jumper MUST be
installed

Red stripe on ribbon
cable must be next to
Debug JTAG jumper and
the power plug.

B. Program Application into FLASH

This was covered in Section 18 of the tutorial.

Using the techniques already discussed, restart Eclipse and open the
“demo2106_blink_flash” project.

Do a “Clean” followed by a “Build All.”

Then start the external tool “Philips LPC2000 Flash Utility” and burn the “main.hex” file
into FLASH, as shown below. You must fit the “BSL” jumper to do this.

I also suggest removing the JTAG ribbon cable from the wiggler while operating the Philips
LPC2000 Flash Utility. Re-connect it when you’re finished burning the FLASH memory.

After successfully burning the executable code into FLASH, be sure to remove the “BSL”
jumper.

C. Create a new FLASH Debug Configuration.

We have already done one of these, creating a “debug configuration” for debugging code
loaded entirely into RAM.

This new configuration will be very similar, just the GDB initialization commands are
different.

First click on the “Debug” button (specifically the pull-down arrow). Then click on
“Debug…”

The Debug window reveals that we only have one “Debug Configuration” defined under
the Zylin “Embedded debug launch” configurations. This is “demo2106_blink_ram”
designed to debug applications loaded entirely into RAM.

Click on “New” to permit specification of a new Debug Launch Configuration.

This will bring up a blank window to define the new “Debug Launch Configuration.”

Click on the “Main” tab.

Give it the name “demo2106_blink_flash” which is the same as the project name.

Likewise, enter “demo2106_blink_flash” as the project name (you could browse for it).

Finally, specify the file “main.out” as the C/C++ application. Note that only the symbols will
be used from this file, we’ve already programmed the code into FLASH via the Philips
LPC2000 Flash Utility as shown above.

Now click on the “Debugger” tab.

Click the “Browse” button and locate the “arm-elf-gdb” debugger. This executable is in the
c:\Program Files\GNUARM\bin\ directory.

Now click on the “Commands” tab. Enter the list of commands as shown.

The following is a list of commands that are executed when the Eclipse/GDB debugger
starts up.

target remote localhost:8888
monitor reset
monitor softbkpts off
symbol-file main.out
set $pc = 0x0
thbreak main
continue

Let’s go through these commands, one-by-one.

target remote localhost:8888

This is a GDB command that specifies communication with the remote target via
Remote Serial Protocol. GDP will use internet port 8888, which is the default port
that the Macraigor OCDRemote uses.

monitor reset

Command sent to OCDRemote that resets the CPU.

monitor softbkpts off

Command sent to OCDRemote that controls breakpoint specification.

softbkpts <ON/OFF>

ON = use both hardware and software breakpoints (default)
 OFF = use only hardware breakpoints for stopping and source stepping CPU

 This means that all breakpoint commands will be directed to the ARM7 hardware

breakpoint circuits. There are just two hardware breakpoint circuits so you must limit
yourself to only two breakpoints at a time.

symbol-file main.out

 This is a GDB command to read the symbol file “main.out” to extract its symbol

information and statement and variable addresses.

set $pc = 0x0

This is a GDB command that sets an ARM register. In this case, we set the PC to
0x000000 so that execution will start from the FLASH reset vector address.

thbreak main

 This is a GDB command that sets a “temporary hardware-assisted breakpoint” at the

address symbol “main”.

 When the ARM7 breaks at “main”, the temporary breakpoint is automatically

removed.

continue

 This is a GDB command to resume execution. This essentially causes the ARM7 to

start execution from the reset vector address 0x0000 and continue through all the
initialization code until the address symbol “main” is reached. Then it will do a
temporary hardware breakpoint.

The “Source” and “Common” tabs are OK to leave in their default condition.

Click on “Apply” and “Close” to finish. Answer “Yes” when the “Save Changes?” dialog
box pops up.

At this time, it might be a good idea to click the “debug” button and then the “Organize
Favorites…” menu choice to make sure both of our debug launch configurations are in the
list of favorites. Just repeat the techniques we’ve used before in this tutorial.

D. Switch to the Eclipse Debug Perspective

Open the “Debug” perspective. You can do this by clicking on “Window – Open
Perspective – Other… - Debug” or you can select the “Debug” button at the upper right of
the screen.

E. Start the OCDRemote Utility

As before, you can start OCDRemote by clicking on the “External Tools” button and its
pull-down arrow and then click “OCDRemote”.

Obviously, we’re looking for this result.

Keep clicking on the OCDRemote button until it synchronizes. If you have no luck, refer to the
suggestions given in the section 21-D concerning debugging of RAM applications.

Tip:

When you select OCDRemote from the
pull-down menu, Eclipse remembers
your last selection.

Clicking on the External Tools button
by itself again will automatically select
OCDRemote.

The “tool-tips” will also tell you what it
will do.

There it is!

No error messages
in the console

F. Launch the Debugger

Obviously, we have to launch the right configuration. Click on the “Debug” button and its
pull-down menu. Select the “demo2106_blink_flash” debug launch configuration.

If the debugger launches successfully, you should see the commands executed in the
“console” view and the debugger will halt at main (with no breakpoints set).

The next maneuver is a bit of a mystery. To get the debugger to operate with two
breakpoints, you have to manually enter the GDB console command “delete.”
From the Stallman book “Debugging with GDB.”

“Delete [breakpoints] [range…]

Delete the breakpoints, watchpoints, or catchpoint of the breakpoint ranges
specified as arguments. If no argument is specified, delete all breakpoints
(GDB asks for confirmation, unless you have set confirm off). You can
abbreviate this command to d.”

To enter this command manually, click inside the console view after the (gdb) prompt and
type the “delete” command.

Obviously, when the debugger starts and stops at main, it must be using one of the two
hardware breakpoint circuits as a resource. Entering the delete command manually seems
to take care of it.

I have experimented with putting the delete command in the debugger startup commands
to no avail. If any of my readers can figure out why this is required, please e-mail me so I
can adjust the tutorial.

My theory is that that temporary breakpoint command “thbreak main” is not removing itself
as advertised, but I’m really not sure of this.

Type this command
and hit “enter”

G. Debugging in FLASH

Debugging in FLASH is exactly like debugging in RAM, as described earlier, with just two
exceptions.

• You can only set two breakpoints at a time. If you are stepping, you should
have no breakpoints set since Eclipse needs the hardware breakpoints for
single-stepping.

• If you re-compile your application, you must stop the debugger, re-build and

burn the main.hex file into FLASH using the Philips LPC2000 Flash Utility. The
Eclipse/GDB debugger cannot program FLASH memory.

The right-click menu function “Run to Line” is best in this scenario since it does a
“temporary” hardware breakpoint and you don’t have to remember if you left a breakpoint
on somewhere.

Let’s practice with our example. Click on the source line Initialize(); and bring up the right-
click menu. Click on the “Run to Line” menu choice

The debugger will execute to the source line you specified.

Cursor is on this line

Let’s step into the initialize() function. Click on the “Step Into” button.

Note that we have no breakpoints specified at this point. The debugger executes to the first
source line in the initialize() function and stops.

Now let’s click the “Step Over” button to advance one source line.

Now we’re at another function call, feed().

Now click the “Step Into” button.

The debugger will execute to the first source line in the function feed().

Now click the “Step Out” button.

The debugger will execute out of the feed() routine to the next source line in the calling
function, which is initialize().

Now click the “Step Out” button again.

The debugger will execute out of the initialize() routine to the next source line in the calling
function, which is main().

Now let’s set a breakpoint. A good choice is the endless loop at the points where we turn
on the LED. Click on the far left margin to set the breakpoint.

Now click on the “resume” button to execute to the breakpoint.

If you want to execute normally, remove all the breakpoints (use the breakpoints view to
see all the ones you have used and use the right-click menu to remove all).

Then click on the “Resume” button to execute continuously.

 breakpoint

 Breakpoint
 here

Now the application should run and blink the LED.

If you want to stop execution, hit the “suspend” button.

In the screen shown below, the debugger has stopped within one of the delay for loops.

Of course, all the Eclipse debugging features such as “hover” variable display, display of
local and global variables and structures, memory dumps, assembler language debugging,
etc. all work great in this FLASH debugging motif.

I’m not going to repeat that information; please review the material on RAM-based
application debugging and try these features.

If you have to restart the debugger, recall this sequence from our RAM debugging.

Debugger
stopped

Kills both the OCDRemote and the debugger

Erases the terminated processes in the tree

Start the OCDRemote; keep trying until it starts properly.

Launch the debugger and download the application

Start and run to main()

H. FLASH Debugging Check List

If you can commit the following simple points to memory, you will be rewarded with hours of
worry-free FLASH debugging.

• Program the FLASH with the Philips LPC2000 Flash Utility after

compiling (your hex file)

• BSL jumper fitted for FLASH burning, removed for FLASH debugging

• Manually enter the “delete” GDB command after starting the debugger

• Never set more than two breakpoints

• Clear all breakpoints while single-stepping

23 The Author Sounds Off

Last year I decided to see if it was possible to put together a complete, low cost ARM
software development system for embedded programming. Purchasing a commercial
package seemed out of the question since the price ranged from $900 to several thousand
dollars. Affordable quick-start packages typically have a time limit on usage or limitations on
the code size. Microsoft has recently developed “express” versions of their tools for free,
non-commercial use. However, their code targets are typically for the Windows/Intel
platform.

That’s when I looked into the GNU tools and the Eclipse platform. They’re open-source and
free. The problem, I discovered, is that the documentation is targeted for experts. The GNU
documentation assumes you are a Linux expert and the Eclipse documentation is targeted
for JAVA programmers. The CDT plug-in for Eclipse currently has no books available for
reference.

Recognizing the difficulty in finding and assembling all these software components, I
decided to make copious notes for myself concerning how I went about this task. The result
is this tutorial; the purpose being a detailed exposition of all the procedures required to
build a completely free ARM software cross development package. This tutorial is designed
for novices; I assume only that you are familiar with C language.

I used the Philips LPC2000 family of embedded ARM controllers as the tutorial’s hardware
examples. These chips are inexpensive, rich in onboard peripherals and contain significant
onboard RAM and FLASH (512K of Flash in the LPC2148). Other manufacturers such as
Analog Devices, Atmel, Cirrus Logic, OKI, ST Microelectronics, Texas Instruments, Intel,
Freescale, Samsung, Sharp and Hynix all produce ARM offerings worthy of consideration.
I’m sure that many of the ideas in my tutorial can be transposed to these other
manufacturer’s designs.

This tutorial was written for students and grown up “kids at heart”; its purpose is to foster
their interest in computer science and electrical engineering. It described in great detail how
to download and install all the component parts of a complete ARM software development
system and gave two simple code examples to try out. Of course, the beauty of this is that
it’s completely free.

I’m not finished writing tutorials. My next tutorial will involve using ARM interrupts and how
to design and implement I2C port expanders to interface to LCD displays and keypads.
Later tutorials will go into motion control, free real-time operating systems and other
hardware projects. Stay tuned, just like you, I’m just getting started!

24 About the Author

Jim Lynch lives in Grand Island, New York and is a Project Manager for Control
Techniques, a subsidiary of Emerson Electric. He develops embedded software for the
company’s industrial drives (high power motor controllers) which are sold all over the world.

Mr. Lynch has previously worked for Mennen Medical, Calspan
Corporation and the Boeing Company. He has a BSEE from Ohio
University and a MSEE from State University of New York at
Buffalo. Jim is a single Father and has two children who now live
in Florida and Nevada. He has two brothers, one is a Viet Nam
veteran in Hollywood, Florida and the other is the Bishop of St.
Petersburg, also in Florida. Jim plays the guitar and is collecting
woodworking machines for future projects that will integrate
woodworking and embedded computers.

Lynch can be reached via e-mail at: lynch007@gmail.com

25 Acknowledgements

I have been very fortunate to have the advice and constructive comments from readers all
across the world. I give my heartfelt appreciation to all and specifically to:

Kjell Eirik Andersen is the "R&D Chief Engineer" at Tandberg
Storage ASA, a company that designs and manufactures half-
height LTO tape drives.

Kjell helped me with the GDB startup commands that prepare
the debugger for FLASH debugging.

His favorite hobby is playing with small microcontrollers.

Kjell lives in Oslo (Norway) with his family and two cats.

Design/Applications Engineer Spencer Oliver from the United Kingdom also provided me
with valuable guidance on how to set up the Eclipse system for FLASH debugging.
Spencer was too bashful to send me a picture.

26 Some Books That May Be Helpful

The following is a short compendium of books that I’ve found helpful on the subject of ARM
microprocessors and the GNU tool chain. I’ve reproduced the Amazon.com data on them.

The ARM documentation can be downloaded free from the ARM web
site.http://www.arm.com/documentation/

The Philips Corporation has extensive documentation on the LPC2000 series here:

http://www.semiconductors.philips.com/pip/LPC2106.html

All the GNU documentation, in PDF format, is maintained by, among others, the University
of South Wales in Sidney, Australia. I found the GNU assembler and linker manuals very
readable; the GNU C compiler manuals are very difficult

http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/

Of course, the bookstore is full of Eclipse books but they are all about the JAVA toolkit. So
far, no one has published anything on the CDT plugin.

Finally, avail yourself of the many discussion groups on the web:

www.yahoo.com GNUARM group
 LPC2000 group

www.sparkfun.com tech support forum

www.newmicros.com tech support forum

www.eclipse.org C/C++ Development Tools User Forum

 HAVE FUN, EVERYBODY!

http://www.arm.com/documentation/
http://www.semiconductors.philips.com/pip/LPC2106.html
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/
http://www.eclipse.org/newsportal/thread.php?group=eclipse.tools.cdt

APPENDIX 1 - Porting LPC2106 Projects to other Processors

The Olimex LPC-P2106 board was arbitrarily chosen as the hardware example for this
tutorial. Many readers will be interested in how to modify the projects shown in this tutorial
to other ARM processors. This process is not difficult; I will demonstrate conversion of the
demo2106_blink_flash project to the Philips LPC2148 ARM7 processor (specifically the
Olimex LPC-P2148 board).

To make this conversion, you need two things; the Olimex LPC-P2148 schematic and the
Philips UM10139 LPC214x User Manual (can be downloaded from their web sites).

Note that the BSL jumper has been replaced with a blue dip-switch #1 at the upper left. Set
towards the crystal is the “run” position; set to the left near the RS-232 connector is the
“flash programming” position. The JTAG jumper and the 20-pin JTAG connector are at the
extreme upper left. The red “reset” button is between the dip-switch and the JTAG
connector.

The “wall wart” power supply, the RS-232 programming cable and the JTAG adapter are all
the same.

Note that there are two LEDs above the two push buttons. The schematic shows that LED1
is connected to GPIO port P0.10. That’s different from the LPC-P2106 board.

The schematic also shows that the crystal is 12 MHz. That’s different also. This means that
the Phased Lock Loop (PLL) setup will have to be revised.

The memory map is different as the newer LPC2148 has 512k of FLASH and 40K of RAM.
We’ll have to recalculate all stack locations.

The User Manual shows that the LPC2148 supports high-speed IO ports; this changes the
addressing of the ports if we wish to utilize this new high-speed port feature.

1. Create a New Project

Using the techniques described earlier in the tutorial, create a new Eclipse Standard Make
C project and give it the name “demo2148_blink_flash”.

2. Import the Tutorial Files

You can use the “File – Import” pull-down menu and browse to the demo2106_blink_flash
project and pick the following five files to import: lpc210x.h

 makefile.mak

 crt.s
 main.c

 demo2106_blink_flash.cmd

change the name of this file.

This is the wrong include file

3. Find the Right Include File

The include file lpc210x.h is the incorrect file for the LPC2148. I found an include file
posted by Philips Applications Group on the Yahoo LPC2000 message board.

http://f1.grp.yahoofs.com/v1/QEeeQyAcAaF5GWXpBCeeHj6uY4N-

C2R5PijwYZB9Eu7CRO6XOIqIDhlhsdYnraxKA2y81CdwRCQa9Y-
vw1qIe_IHhqBWgGaFiQ/LPC214x.h

That’s some web address, isn’t it! Delete the lpc210x.h file and import the correct one which
is lpc214x.h.

4. Rename the Linker Command File

Use the Eclipse right-click menu in the projects view and rename the linker command file to
lpc2148.cmd.

5. Change all Text Strings “2106” to “2148”

Basically, search all five files and replace all occurrences of “2106” with “2148”.

The safest thing to do is to open each file and search/replace using the Edit menu. I found
that the “Search” pull-down menu doesn’t look at the makefile.

Most of these changes are to annotation, but in the case of the makefile, it effects a
filename. The linker command file is a good example.

This is the correct include file.

This is a more appropriate name.

The end
0x40007
we won’

The linke
annotati

6. Recalculate the Stacks

The memory maps of the LPC2106 ARM processor and the newer LPC2148 ARM
processor are different. The LPC2148 has more FLASH and less RAM. This effects the
stack placement.

LPC2148

The LPC

The link

LPC2106
-of-RAM for the LPC2106 is at 0x4000FFFF. The end of RAM for the LPC2148 is
FFF (there also is an 8K RAM block at 0x7FD00000 for USB DMA operations, but
t use that for the stacks).

r command file has been reproduced in its entirety below. There is extensive
on showing the new memory map for the LPC2148.

2148 also has 512K of FLASH eprom.

er commands that have changed are noted also.

7. PLL Setup

The Olimex LPC-P2148 board has a 12 mhz crystal. The setup of the phased lock loop
(PLL) must be revised.

On page 34 of the LPC214x User Manual are two examples of how to calculate the needed
PLL initialization values. One example is for a system without USB and the other one is for
an application that does employ the USB. This tutorial does NOT use the USB version.

Fosc = 12000000 hz (crystal frequency)
Fcco = 2 (PLL current controlled oscilator frequency)
cclk = 60000000 hz (desired system clock)

 cclk 60000000
M = ----------- = ---------------- = 5 (PLL multiplier value)
 Fosc 12000000

 PLLCFG[4 : 0] = 00100

The PLL divider value, P, must have one of the values 1, 2, 4, 8.

 Fcco
P = ------------------- as long as Fcco is in the range of 156 Mhz to 320 Mhz
 Cclk * 2

Let’s calculate the high and low limits of Fcco

 156000000
P = ----------------------- = 1.3 (156 Mhz)
 60000000 * 2

 320000000

 60000000 * 2

Therefore, we write M-1 or 4 into the 5 bits of the PLLCFG register.

P = ----------------------- = 2.6 (320 Mhz)

Obviously, the highest value of P that we can pick is 2. This value will not exceed the
limitation that Fcco is less than 320 Mhz.

Therefore, we look at Table 22 of the Philips LPC214x User Guide and see that a value of
P = 2 will require us to enter binary 01 into bits 6-5 of the PLLCFG register.

PLLCFG = 0 01 00100 = 0x24

The only change to the initialize() code in the main.c source code is the setting of the PLL
configuration register, as shown below.

8. Controling the LED I/O Port

There are two things to consider here. First, the Olimex LPC-P2106 board had the LED
attached to port P0.7 while the newer LPC-P2148 board has two LEDs. LED1 is attached
to port P0.10.

Also, the LPC2148 has the new “fast” I/O ports; designed to satisfy the scores of customers
who complained about how slow the toggle rate was on the LPC2106 ports.

In the code snippet from main.c below, note that we set the System Control and Status
Flags Register (SCS) to enable the “fast” I/O ports. The LED1 is in the port 0 setup, so that
is identified as FIO0xxx in the lpc214x.h file.

MAIN.C Code Snippet

This completes the conversion of the flash-based demo2106_blink_flash project to the
LPC2148 processor. I noticed that the JTAG/Wiggler works much better on this Olimex
board, this might be a result of every JTAG pin now having 10K pull-up and pull-down
resistors.

For those readers planning to port these example projects to other manufacturers; this will
be much more difficult. Programming onboard flash is usually different. Layout of the I/O
pins will certainly be different. There is no substitute for detailed and careful reading of the
manufacturer’s User Manuals.

APPENDIX 2 - Cygwin Heap Allocation Problems

Quite unexpectedly, my cygwin/gnuarm system started occasionally crashing due to
a "heap allocation" problem. This can occur during any of the gnuarm utilities (C compiler,
assembler, objdump, etc.)

This is a typical error message:

.compiling
arm-elf-gcc -I./ -c -fno-common -O0 -g main.c
c:\program files\gnuarm\bin\arm-elf-gcc.exe (3828): *** couldn't
allocate cygwin heap, Win32 error 487, base 0x480000, top 0x48A000,
reserve_size 40960, allocsize 40960, page_const 4096
7 [main] arm-elf-gcc 968 fork_parent: child 3828 died waiting
for longjmp before initialization
make: Target `all' not remade because of errors.

In this situation, you may have to change Cygwin’s maximum memory. The following is a
link to the Cygwin description of the procedure.

http://www.cygwin.com/cygwin-ug-net/setup-maxmem.html

To change Cygwin’s maximum memory, click on “Start – Run” and run the program
“regedit”

When the Registry Editor starts up, you should see the following:

Click on HKEY_LOCAL_MACHINE – SOFTWARE – Cygnus Solutions – Cygwin” and
you will see the following display.

Enter a new DWORD entry “heap_chunk_in_mb” = 0x0000800 (256 mb)” as shown
below.

Reboot your computer and pray!

Bring up the right-click menu on the
Registry value “Cygwin.”

	ARM Cross Development with Eclipse
	Version 3
	Key features

	Downloading the GNUARM Compiler Suite
	Installing the Philips LPC2000 Flash Utility into Eclipse
	Installing the Macraigor OCDremote Utility

