ARM Cross Development with Eclipse
Version 3

By: James P. Lynch

December 11, 2005

Preface to Version 3

When | revised this tutorial in September 2005, everything needed to provide a complete
Eclipse/ARM cross-development package was in place. The only shortcoming was that the
Eclipse debugger could not debug programs in FLASH. Now that issue has been resolved.

Macraigor Systems LLC updated their free OCDRemote utility to handle hardware
breakpoints (GDB remote serial protocol “Z1,addr,length” commands).

The Macraigor OCDRemote utility has a monitor command (monitor softbkpts off) that
forces the utility to convert all Eclipse software breakpoints (which don’t work in FLASH) to
hardware breakpoints (ARM7 cores allow two hardware breakpoints and they do, of course,
work in FLASH). When you double-click on the “breakpoint” area on the left side of the
source window in Eclipse, you are now setting an ARM hardware breakpoint.

You can only set two hardware breakpoints (a limitation of the ARM7 core). This is not
much of a roadblock. You can single-step in and out of functions, inspect and change
variables, view memory dumps, and work in assembler mode.

If you need more than two breakpoints, you can elect not to send the “monitor softbkpts off”
command during GDB initialization and thus debug RAM-based applications with all the
software breakpoints you desire.

James P. Lynch

1 Introduction

| credit my interest in science and electronics to science fiction movies in the fifties.
Robbie the Robot in the movie “Forbidden Planet” especially enthralled me and |
watched every episode of Rocky Jones, Space Ranger on television. In high
school, I built a robot and even received a ham radio operator license at age 13.

Electronic kits were popular then and | built many Heath kits and Knight kits,
everything from ham radio gear to televisions, personal computers and robots.
These kits not only saved money at the time, but the extensive instruction manuals
taught the basics of electronics.

Unfortunately, surface mount technology and pick-and-place machines obliterated
any cost advantage to “building it yourself” and Heath and Allied Radio all dropped
out of the kit business.

What of our children today? They have home computers to play with, don’t they?
Do you learn anything by playing a Star Wars game or downloading music? | think
not, while these pastimes may be fun they are certainly not intellectually creative.

A couple years ago, there were 5 billion microcomputer chips manufactured planet-
wide. Only 300 million of these went into desktop computers. The rest went into
toasters, cars, fighter jets and Roomba vacuum cleaners. This is where the real
action is in the field of computer science and engineering. It's called “embedded
software development”.

Can today’s young student or home hobbyist tired of watching Reality Television
dabble in microcomputer electronics? The answer is an unequivocal YES!

Most people start out with projects involving the Microchip PIC series of microcontrollers.
You may have seen these in Nuts and Volts magazine or visited the plethora of web sites
devoted to PIC computing. PIC microcomputer chips are very cheap (a couple of dollars)
and you can get an IDE (Integrated Development Environment), compilers and emulators
from Microchip and others for a very reasonable price.

Another inexpensive microcontroller for the hobbyist to work with is the Rabbit
microcomputer. The Rabbit line is an 8-bit microcontroller with development
packages (board and software) costing less that $140.

I've longed for a real, state-of-the-art microcomputer to play with. One that can do 32-bit
arithmetic as fast as a speeding bullet and has all the on-board RAM and EPROM needed
to build sophisticated applications. My prayers have been answered recently as big players
such as Texas Instruments, Philips and Atmel have been selling inexpensive
microcontroller chips based on the 32-bit ARM architecture. These chips have integrated
RAM and FLASH memory, a rich set of peripherals such as serial /0, PWM, 12C, SSI,
Timers etc. and high performance at low power consumption.

A very good example from this group is the Philips LPC2000 family of microcontrollers. The
LPC2106 has the following features, all enclosed in a 48-pin package costing about $11.88
(latest price from Digikey for one LPC2106).

Key features

e 16/32-bit ARM7TDMI-S processor.
e 64 kB on-chip Static RAM.
128 kB on-chip Flash Program Memory. In-System Programming (ISP) and In-Application
Programming (IAP) via on-chip boot-loader software.
Vectored Interrupt Controller with configurable priorities and vector addresses.
JTAG interface enables breakpoints and watch points.
Multiple serial interfaces including two UARTSs (16C550), Fast I2C (400 kbits/s) and SPI™.
Two 32-bit timers (7 capture/compare channels), PWM unit (6 outputs), Real Time Clock and
Watchdog.
Up to thirty-two 5 V tolerant general-purpose I/O pins in a tiny LQFP48 (7 x 7 mm?) package.
60 MHz maximum CPU clock available from programmable on-chip Phase-Locked Loop with settling
time of 100 us.
On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.
Two low power modes: Idle and Power-down.
Processor wake-up from Power-down mode via external interrupt.
Individual enable/disable of peripheral functions for power optimization.
Dual power supply:
0 CPU operating voltage range of 1.65 Vto 1.95V (1.8 V +- 8.3 pct.).
o0 |/O power supply range of 3.0 Vto 3.6 V (3.3 V +- 10 pct.) with 5 V tolerant I/O pads.

Several companies have come forward with the LPC2000 microcontroller chips placed on
modern surface-mount boards, ready to use. Olimex and New Micros have a nice catalog
of inexpensive boards using the Philips ARM family. | wrote a similar tutorial for the New
Micros TiniARM a year ago and you can see it on their web site www.newmicros.com.

Olimex, an up-and-coming electronics company in Bulgaria, offers a family of Philips
LPC2100 boards. Specifically they offer three versions with the LPC2106 CPU. The Olimex
web site is www.olimex.com. You can also buy these from Spark Fun Electronics in
Colorado; their web site is www.sparkfun.com The Olimex boards are also carried by
Microcontroller Pros in California, their web site is www.microcontrollershop.com

This is the Olimex LPC-H2106 header board. You can
literally solder this tiny board onto Radio Shack
perfboard, attach a power supply and serial cable and
start programming. It costs about $49.95

Obviously, it requires some soldering to get started.

This is the Olimex LPC-P2106 prototype board.
Everything is done for you. There’s a power connector
for a wall-wart power supply, a DB-9 serial connector
and a JTAG port. It costs about $59.95 plus $2.95 for
the wall-wart power supply.

http://www.newmicros.com/
http://www.olimex.com/
http://www.sparkfun.com/
http://www.microcontrollershop.com/

This is the Olimex LPT-MT development board; it has
everything the prototype board above includes plus a
LCD display and four pushbuttons to experiment with. It
costs about $79.95 plus $2.95 for the wall-wart power

supply.

For starting out, | would recommend the LPC-P2106 prototype board since it has an open
prototype area for adding 12C chips and the like for advanced experimentation.

When you do design and develop something really clever, you could use the LPC-H2106
header board soldered into a nice Jameco or Digikey prototype board and know that the
CPU end of your project will work straight away. If you need to build multiple copies of your
design, Spark Fun can get small runs of blank circuit boards built for $5.00 per square inch.
You can acquire the Eagle-Lite software from CadSoft for free to design the schematic and
PCB masks.

So the hardware to experiment with 32-bit ARM microprocessors is available and
affordable. What about the software required for editing, compiling, linking and downloading
applications for the LPC2106 board?

Embedded microcomputer development software has always been considered
“professional” and priced accordingly. It's very common for an engineer in a technical
company to spend $1000 to $5000 for a professional development package. | once ordered
$18,000 of compilers and emulators for a single project. In the professional engineering
world, time is money. The commercial software development packages for the ARM
architecture install easily, are well supported and rarely have bugs. In fact, most of them
can load your program into either RAM or FLASH and you can set breakpoints in either.
The professional compiler packages are also quite efficient; they generate compact and
speedy code.

The Rowley CrossWorks recommended by Olimex is $904.00, clearly out of the range for
the student or hobby experimenter. I've seen other packages going up as high as $3000. A
professional would not bat an eyelash about paying this — time is money.

There is a low cost alternative to the high priced professional software development
packages, the GNU toolset. GNU is the cornerstone of the open-source software
movement. It was used to build the LINUX operating system. The GNU Toolset includes
compilers, linkers, utilities for all the major microprocessor platforms, including the ARM
architecture. The GNU toolset is free.

The editor of choice these days is the Eclipse open-source Integrated Development
Environment (IDE). By adding the CDT plugin (C/C++ Development Toolkit), you can edit
and build C programs using the GNU compiler toolkit. Eclipse is also free.

Philips provides a Windows flash programming utility that allows you to transfer the hex file
created by the GNU compiler/linker into the onboard flash EPROM on the LPC2106
microprocessor chip. The Philips tool is also free.

Macraigor has made available a free Windows utility called OCDremote that allows the
Eclipse/GDB (GNU Debugger) to access the Philips LPC2106 microprocessor via the JTAG
port using an expensive device called the “wiggler”. The Norwegian company Zylin has
created a custom version of CDT that enables the debugger to work better with cross-
development applications.

At this point, you're probably saying “this is great — all these tools and they’re FREE!” In the
interest of honesty and openness, let’'s delineate the downside of the free open software
GNU tools.

e The GNU tools do not currently generate as efficient code as the professional
compilers.

e The Eclipse CDT Debugger can only set two hardware breakpoints in FLASH.

e You need an internet broadband connection to download all these free software
tools.

If you were a professional programmer, you might not accept these limitations. For the
student or hobbyist, the Eclipse/GNU toolset still gives fantastic capabilities for zero cost.

The Eclipse/GNU Compiler toolset we will be creating in this tutorial operates in three

modes.

A. Application programmed into FLASH (no debugging)

COM1

Short the BSL
jumper to download

and program into
flash.

Remove the BSL
jumper to execute

You can use a
standard 9-pin PC
serial cable to
connect COM1 to the
Olimex board.

DB-9
erial Port

®

rEEESEEEEEEEEEEEEENN@®e

el SRR R NRRRRRERERREDRI[()Y

¢
:

o=

LA
=

N mom@
o =Zm

— __JThAB

Ciz Cil C®
N EE EN

EEEEEEEEEEEEENEEEEEEE
EEEEEEEEEEEEEEEEENEEENR
EEEEEEEEEEEEEEEEEEEENR
EEEEEEEEEEEESEEEEEEEEER
SEEEEEEEEEEEEEEEEEEEESR
SIS NS EE N EEEEENEEEEEEES
SN EEEEEENSNEEEEEEEESR
EEEEEEEEEENEEEEEEENEER
EEEEEEEEEEEEEEEEEEEEER
EEEEEEESEEEEEEEEEEEEEEN
SEEEEEEESEEEEEEEEEEEEEN
SEEEEEEEEEEEEEEEEEEEED
SEEESEESEEEEEEEEEEEEESE

6 HTTP://HWW. OLIMEX. COM/DEV

WMEEEEEEEEEEEEEEEN
“EEEEEEEEEEEEER

2]

In this mode, the Eclipse/GNU development system assembles, compiles and links your
application for loading into FLASH memory. The output of the compiler/linker suite is an

Intel hex file, e.g. main.hex.

The Philips LPC2000 Flash Utility is started within Eclipse and will download your hex file
and program the flash memory through the standard COML1 serial cable. The Boot Strap
Loader (BSL) jumper must be shorted (installed) to run the Philips flash programming

utility.

To execute the application, you remove the BSL jumper and push the RESET button to

start the application.

B. Application programmed and debugged into RAM

Olimex ARM JTAG Adapter

(WIGGLER)

LPT1

T

Install the Debug
JTAG jumper while
running from RAM

i

@ Fag

o cjejelele] 5
- 18888 85

Gl.? Cil C8
N EE EN

Ehdili €18 C19
oNE mzan 12

The BSL jumper
generally doesn’t
matter while using
JTAG

ﬂauvvv'ﬂ u'og

aNe
X,
tl)(
1

EEEEEENEEEEEEEEEENEEEEEEEEEEEEN
LA R R RN RN RRRNRRRNRNRERNNNRNNNRRDNH]
EEEEEEEE NN EEEEEEEEEEEEEEEEEEES
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
EEEE SN EEEEEEEEEEENEEEEEEEEEEEEN
EEEEEEEEEEEEEEEEEEEEEENNEEEEEEN
EEEEEEEEEEEEEEEENEEEEEEEEEEEEEN
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
EEEEEEEENEEEEEEEENEEEEEEEEEEEER
EEEEEEEEFEEEEEEERNEEEEEEEEEEEER
EEEEEEEEESEEEEEEEEEEEEEEEEEEEEN
EEEEEEEEENE S EEEENEEESEEEEEEEEEEDR
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
EEEEEEEEEEEENEEEEEEEEEEEEEEEEEEN
EEEEEEEEENEEENEEEENEEEEEEEEEEEEER
EEEEEEEEESEEENEEENEEEEEEEEEEEEER
EEEEEEEEEEEENEEEENEEEEEEEEEEEEN
@ EEIENEEEEEEEEEEEEENEEEEEEER
LPC-P21@6 HTTP://HUW.OLIMEX. COM/DEV

(1 12

ENEY
€
]
]
f+]
@
<

Bl

E [é]f_'_':Dl—EE 20-pin

P OLIMEX LTD
"@; 8,3 " COPYRIGHT(C) 2003 se|| JTAG

nnnnnnnnnn
233 I EEEEE N EE]

Port

nnnnnnnnnn

In this mode, the Eclipse/GNU development system assembles, compiles and links
your application for loading into RAM memory. The output of the compiler/linker
suite is a GNU main.out file.

The PC is connected from the PC’s printer port LPT1 to the JTAG port through the
Olimex ARM JTAG interface (costs about $19.95 from Spark Fun Electronics).
The Olimex ARM JTAG is a clone of the Macraigor Wiggler.

You can run the OCDRemote program as an external tool from within Eclipse. The
CDT debugger (started from within Eclipse) communicates with the Macraigor
OCDRemote program that operates the JTAG port using the Wiggler. With the
CDT debugger, you can connect to the Wiggler and load the GNU main.out file
into RAM. From this point on, you can set software breakpoints, view variables and
structures and, of course, run the application.

The drawback is that the application must fit within RAM memory on the LPC2106,

which is 64 Kbytes. Still, it's better than nothing.

C. Application programmed and debugged into FLASH

Olimex ARM JTAG Adapter

:

i

(WIGGLER)

)

) Install the Debug
|| JTAG jumper while

debugging FLASH

—n
LPT1
o|jJ| COM1

® - 2 g' "l @ [
u Lo €3
_.’85 o o o o B iy 3 @ — T

The BSL jumper is installed
while programming FLASH.

The BSL jumper is removed

while debugging FLASH.

4 5

18 & 9 85
Ci2 ci1 c®
EE EEER

o
M3
s

]

87

in
n
(ij
lem mbts
.pllcﬂ
[BN E]
[
-
[B
.z

oo . &
piannnna - - — S
w2 -
(NS Y w2 F HE= ol
_ aw mm B sE e m e
L as cie £ s =2 O m .e
ofR mzmp -2 T gy LB
Sy-Ae-a - D& “== e ||Port
@; 8,3 COPYRIGHT(C) 2003 .o
= =3
vvvvvvv v EEBE_SEEEEEEEsEsl—
NI T
DOCOO0O0O00O00 00000000000 O 00O
EEEEEENENEENSEENENEEEEEEEEENEER

EEEEEEEEEE
EEEEEEEENEENEEEEEEEEESEEEENEEENER
(AR R RN RNRERRRNNRNRENRNERENNRE]]
EEEESEEEESEEEEEEEEENEEENENEEEES
EEEEEEEE NSNS EEEEEEESEEEEEEEEEESN
EEEEEEEEEEEEEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
EEEENEEEESEEEEEEEEEEESEEEEEEEN
(AR R RN RN RNRNRERNRNRENNRE]]
© EEEEEENESENEEEEENEEEEEEEEESR
LPC-P21@6 HTTP://HWW. OLIMEX. COM/DEV

In this mode, the Eclipse/GNU development system assembles, compiles and links your
application for loading into FLASH memory. The output of the compiler/linker suite is an
Intel hex file, e.g. main.hex.

The Philips LPC2000 Flash Utility is started within Eclipse and will download your hex file
and program the flash memory through the standard COML1 serial cable. The Boot Strap
Loader (BSL) jumper must be shorted (installed) to run the Philips flash programming

utility.

Next you remove the Boot Strap Loader (BSL) jumper and attach the JTAG cable
(or just leave it in). By starting the OCDRemote utility, the Eclipse debugger can

operate in FLASH with two hardware breakpoints.

The Eclipse debugger will initialize the GDB debugger by loading the symbols from
the output file “main.out”. It will also instruct the OCDRemote utility to convert all
Eclipse software breakpoints to hardware breakpoints. It will set a temporary

20-pin
JTAG

hardware breakpoint at main() and set the PC to 0x000000 (the reset vector). This
will start execution and the Eclipse debugger will stop at main().

Now you can debug to your heart’s content; as long as you don’t specify more than
two breakpoints.

If you are very new to ARM microcomputers, there’s no better introductory book
than “The Insider’s Guide to the Philips ARM7-Based Microcontrollers” by
Trevor Martin. Martin is an executive of Hitex, a UK vendor of embedded
microcomputer development software and hardware and he obviously understands
his material.

hitexwsssm PHILIPS e

DEVELORMEN

THE INSIDER's GUIDE To THE
PHILIPS ARM7-BASED
MICROCONTROLLERS

An Engineer's introduction To The LPCz1oo Series
Trevor Martin BSc. (hons.,) CEng. MIEE

www.hitex.co.uk/arm

You can download this e-book for free from the Hitex web site.

http://www.hitex.co.uk/arm/lpc2000book/index.html

There is a controversial section in Chapter 2 with benchmarks showing that the GNU
toolset is 4 times slower in execution performance and 3.5 times larger in code size than
other professional compiler suites for the ARM microprocessors. Already Mr. Martin has
been challenged about these benchmarks on the internet message boards; see “The
Dhrystone benchmark, the LPC2106 and GNU GCC” at this web address:

http://www.compuphase.com/dhrystone.htm

http://www.hitex.co.uk/arm/lpc2000book/index.html
http://www.compuphase.com/dhrystone.htm

Well, we can'’t fault Trevor Martin for tooting his own horn! In any case, Martin’s book is a
magnificent work and it would behoove you to download and spend a couple hours reading
it. I've used Hitex tools professionally and can vouch for their quality and value. Read his
book! Better yet, it's required reading.

My purpose in this tutorial is to guide the student or hobbyist through the myriad of
documentation and web sites containing the necessary component parts of a
working ARM software development environment. I've devised a simple sample
program that blinks an LED that is compatible in every way with the GNU
assembler, compiler and linker.

There are two variants of this program; a FLASH-based version and a RAM-based
version. The RAM-based version is limited to the LPC2106 RAM space (64K) but
you can set an unlimited number of software breakpoints. The FLASH-based
version can be burned into onboard flash using the Philips ISP utility and then
debugged using JTAG as long as you limit yourself to two breakpoints (hardware).

If you get this to work, you are well on your way to the fascinating world of
embedded software development. Take a deep breath and HERE WE GO!

2

Installing the Necessary Components

To set up an ARM cross-development environment using Eclipse, you need to
download and install several components. The required parts of the Eclipse/ARM
cross development system are:

1.

2.

SUN Java Runtime

Eclipse IDE

Eclipse CDT Plug-in for C++/C Development (Zylin custom version)
CYGWIN GNU C++/C Compiler and Toolset for Windows

GNUARM GNU C++/C Compiler for ARM Targets

Philips Flash Programmer for LPC2100 Family CPUs

Macraigor OCDremote for JTAG debugging

3 JAVA Runtime

The Eclipse IDE was written entirely in JAVA. Therefore, you must have the JAVA
runtime installed on your Windows computer to run Eclipse. Most people already
have JAVA set up in their Windows system, but just in case you don’t have JAVA
installed, here’s how to do it.

The JAVA runtime is available free at www.sun.com. The following screen will
appear. Click on “Downloads — Java 2 Standard Edition” to continue.

¥ .
%o duUn =
microsystems STORAGETEK £
Africa’sbestand n
THE LEADER IN brightest youth gather. ;
DATA MANAGEMENT
Sun Microsystems Completes Acquisition of StorageTek to deliver excellent T
service and value to our shared customers ~ and a broad portfolio of open Workeation tets
products to meet your data management needs. » Read More you hit the road. “3

What's New: Korean NEIS] I Solaris 10 0S for Schools... » More News
Shop for Products Communities
Solaris Service Software Developers Help the
Servers Solatis 10 Systern Administrators Victims of
xfid Products StarOfiice Fartners Asisdican Hurr]cane
UltraSPARC IV Storage Investors Red Cross Katrina
Education
» Sun Store » Take me to Communities » Donate
Cortact | About Sun | Mewws & Events | Employment | Privacy | Terms of Use | Trademarks powered by %Su«n

Copyright 1994-2005 Sun Microsystems, Inc. T et

http://www.sun.com/

Select the “latest and greatest” Java runtime system by clicking on J2SE 5.0.

Sun Developer Network

Products and Technologies Technical Topics

Developers Home = Products & Technologies = Java Technology = J2SE =

J2SE
Downloads
= Downloads The links helow will take you to the download sites for the versions ofthe J2SE platform that are curren
_ download the Java 2 SDIK, Java 2 RBuntime Environment, documentation, and other products related ta
Early Access
Reference
- ARl Specifications T
- Documentation = JI5E1.31
-FAQs
- Code Samples & Apps Download Archived Releases
- BlueFrints

:Iﬁ;ﬁ;g::}’:g“es &Tips Sun maintains & download site for previously released versions of the J2SE platform and related prody

- Third-Party and are no longer covered by standard support contracts. These downloads are made availableasac
o resolution.
- Compatibility

Specifically, we need only the Java Runtime Environment (JRE). Click on
“Download JRE 5.0 Update 3.”

A Download Java 2 Platform, Standard Edition 5.0 - Microsoft Internet Explorer

File Edit ‘Wiew Favorites Tools Help

eBack = \J \ﬂ @ _h /'__\J Search “ii(Favorites @ [/j:{v :_\f, = _J m @ ﬁ

Address @ http:fijawa. sun.comfj2sef1.5.0/download. jsp

Sun Developer Network

Products and Technologies Technical Topics

Developers Home = Products & Technologies = Java Technology = J25E = Care Java = J2SES0 =

J2SE 5.0
Download Java 2 Platform Standard Edition 5.0
mDownloads Confused or having trouble downloading or installing? See the download help page.
Reference Supported Systern Configurations
- APl Specifications
- Docurnentation
- Compatibility NetBeans IDE + JDK 5.0 Update 3
Community

_/“'-—...
29 netbeans
- Forums JF

Thiz dizstribution of the J25E Development Kit (JDK) includes MetBieans IDE, which iz a powwerful integrated developmernt enviror

Learning platfarm. Mare info...

- Tutorials & Code Camps
- Online Sessions & Courses

- Instructor-Led Courses
- Course Certification <JDK 5.0 Update 3
The J25E Development Kit (JDK) supports creating J23E applications. More info...

Download JDK 5.0 Update 3

Installation Instructions ReadMe Releasebotes
SunLicense Third Party Licenses

JRE 5.0 Update 3

The J25E Runtime Environment (JRE) allows end-users to run

Dy ai JRE 5.0 Up(lme 3

Installation n Hleaseotes
Sun L|cense Third Parhf Licenses

J2SE 5.0 Documentation

The Sun “Terms of Use” screen appears first. You have to accept the Sun binary
code license to proceed. If you develop a commercial product using the Sun JAVA
tools, you will have to pay royalties to them.

developers.sun.com = osearchtips | Search: in Developers' Site | s n
The Source for Java Developers

Java

s,

Terms of Use
Please indicate whether you accept or do not accept the following software license agreement(s) by choosing either "Accept” or "Decline” and clicking the "Continue” button

MNOTE: Ifyou do not accept the license agreement for a product you have chosen, you will not be able to purchase or download that product.

LICENSE AGREEMENT

J2SE(TM) Runtime Environment 5.0 Update 2, Download

In arderto obtain JZSE(TM) Runtime Enviranment 5.0 Update 2 you must agree to the software license below:
=] Printer Friendly Page

Sun Microsystems, Inc. Binary Code License Agreement ~

or the JAVA 2 PLATFORM STAMDARD EDITION RUNTIME
ENVIROMNMENT 5.0

SUNMICROSYSTEMS, ING. {'SUN" 13 WILLING TO LICENSE THE
ISOFTWARE IDENTIFIED BELOW TO YQU ONLY UPON THE COMDITION
[THAT YU ACCEPT ALL OF THE TERMS COMNTAINED IN THIS BINARY
(CODE LICEMSE AGREEMENT AND SUPPLEMENTAL LICEMSE TERMS
(COLLECTIWELY "AGREEMENT"). PLEASE READ THE AGREEMENT
ICAREFULLY. BY DOWNLOADING OR INSTALLING THIS SOFTWARE,

ou

WCCERT THE TERMS OF THE AGREEMENT. INDICATE ACCEFTANCE

B

ISELECTING THE "ACCEPT" BUTTOM AT THE BOTTOM OF THE v

Select the “accept”
©aecont “pecine | quemmmed 110 button and click
[conunue | “continue” to proceed.

One more choice to decide on — we want the “online” installation for Windows.

developers.sun.com » searchtips | Search: in Developers' Site | » n
The Source for Java Developers

$

Java

Download
J2SE(TM) Runtime Environment 5.0 Update 2

MOTE: The list offers files for different platforms - please he sure to selectthe properfile(s) for your platform. Carefully review the files listed helow to select the ones you want, then click the link
(s} to download. Ifyou don't complete your download, you may return to the Download Center anytime, sian in, then click the "Download/Order History link on the leftto continue

Howi leng will it take? (3

Download problems or Guestions? See the Sun Download Center FAQ

Click below to download

Windows Offline Installation, Multi-language (ire-1 5 0_0Z-windows-i586-p.exe, 1525 MB) &
‘Windows Online Installation, Multi-language (jre-1_5_0_02-windaws-i986-p-iftw.exe, 221.27 KB) b3}

Linux RPM in self_extracting file (rs-1_5_0_02-linux-1586-rarm.bin, 1527 MB) &

Linux self-extracting file (jre-1_5_0_02-linux-i986.bin, 15.78 MB) £
sRC Platform

Solaris SPARC 32-bit self-extracting file {jre-1_5_0_02-s0laris-sparc sh, 19 45 MB) &

Solaris SPARC 64-hit self-extracting file (jre-1_5_0_02-solaris-sparcvd sh, 8.33 MB) £

Solaris x86 self-extracting file {jre-1_5_0_02-solaris-i586.5h, 14.44 MB) &

Platform

Solaris AMD64 self-extracting file {re-1_5_0_02-solaris-amd64.sh, 4.72 MB) 3]

AMDE4 Platiorm

Linux AMD64 RPM in self-extracting file (jre-1_5_0_02-linus-arndBd-rprmbin, 14.91 MB) 2
Linux AMD64 self-extracting file {jre-1_5_0_02-linux-amd64.hin, 15.41 MB) £

Far Customer Service, e-mail SDLC-EXT@sun.com

Here’s a blow-up of the line we must click on. We select “online” so we can install immediately.

Windows Offline Installation, Multi-language (jre-1_5_0_02-windows-i536-p.exe, 15.25 MB) g
Windows Online Installation, Multi-language ijre-1_4_0_02-windows-1586-p-iftw exe, 221.27 KRB) @

Finally the “file download” window appears. Click on “Run” to download and run the
installation.

File Download - Security Warning

< Do you want to run or zave this file?

MNarme: jre-1_5_0_02-windows-iI586-p.exe
Type: Application, 15.2 ME

From: sunsdlcl-11-vhoskl,sun.com

’_ Fun J Save J[Cancel J

potentially harm vour computer. If pou do not trugt the zource, do not

@ “while files from the Internet can be ugeful, this file type can
rur ar gave this software, What's the risk?

Now the downloading will start.

20% of jre-1_5_0_02-windo... |- | [X]

® =

Saving:

..._5_0_0Z-windows-i536-p.exe from sunsdlcl-11-vhastl.sun.com
o)
Estimated time left 45 sec (3,09 ME of 15,2 ME copied)

Download ko: Dt Ajre-1_5_0_02-windows-i586-p.exe

Transfer rate: 276 KBj5ec

Cloze thiz dialog box when download completes

Open Open Falder

After downloading, the installation will proceed automatically.

iz J2SE Runtime Environment 5.0 Update 3 - Progress

Installing

The program features vou selected are being installed,

Please wait while the Install wizard installs 725E Runtime Environment 5.0
Update 3. This may take several minutes,

Skatus:

Downloading Files

[IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]

InstallShield

< Back Mext =

When the Java Runtime Environment installation completes, you will see this display. Click
on “Finish.”

i J2SE Runtime Environment 5.0 Update 3 - Complete |X|

Installation Completed

The Install Wizard has successfully installed 125E Runkime
Ervironment 5.0 Update 3. Click Finish to exit the wizard.

As a quick check, go to the Windows Start menu and select “Start — Control Panel — Add
or Remove Programs.” Scroll down the list of installed programs and see if the Java J2SE
Runtime Environment was indeed installed!

¥ Add or Remove Programs

%ﬂ 1 Currently installed prograrns: [show updates Sort by! | Mamme w |
Change or P LnCEH T PROTETWOrE, ADapters and CFvers Size 291MB A
p%i?rix:s “: Intel{R) PROSet For Wired Connections B

- é} JZ5E Runtime Environment 5.0 Update 3 Size 117.00MB
% ¥ Jasc Faint Shop Photo Album 5
Srfl::l;rNT:'nb: — 0 Jasc Paink Shop Pra Studia, Dell Editon |
E Learnz Plaver {(Uninstall Only) Size 0.68MB
@ ' LPCZ000 Flash Ukility
addjRemove o #8 Macraigor Swstems Hardware Suoport Package 2,12 Size 2 aome ¥
. bt

The Sun Microsystems web site is very dynamic, changing all the time. Don’t be surprised if
some of the example displays shown here are a bit different.

4 Eclipse IDE

The Eclipse IDE is a complete integrated development platform similar to Microsoft’s Visual
Studio. Originally developed by IBM, it has been donated to the Open-Source community
and is now a massive world-wide Open-Source development project.

Eclipse, by itself, is configured to edit and debug JAVA programs. By installing the CDT
plug-ins, you can use Eclipse to edit and debug C/C++ programs (more on that later).

When properly setup, you will have a sophisticated programmer’s editor, compilers and
debugger sufficient to design, build and debug ARM applications.

You can download Eclipse for free at the following web site.

www.eclipse.orq

The following Eclipse welcome page will display. Expect some differences from my
example below since the Eclipse web site is very dynamic.

A Eclipse.org Main Page - Microsoft Internet Explorer

File Edit Wisw Favarites Tools Help a’

Ow- O RNAG Lo oo @ 35 B-LUIND B

Address ahttp:,l',l'www.eclipse.org,l' A Go Links ¥ @ -

r - =
‘eclipse eclipse.org
home
about us
eclipse.org
downloads
articles =
Newsgraups whats eclipse in featured eclipse available now
e the news comer aricles
cornmunity
search Welcome to eclipse.org
bugs Eclipse is an open source community whose projects are focused on providing an extensible development

platform and application frameworks for building software. Eclipse provides extensible tools and framewarks
that span the software development lifecycle, including suppart for modeling, language development
environments for Java, C/C++ and others, testing and performance, business intelligence, rich client
applications and embedded development. A large, vibrant ecosystem of major technology vendors,
innovative start-ups, universities and research institutions and individuals extend, complement and support
the Eclipse Platform.

Find out what eclipse is all about - check out the Eclipse Roadmap, white paper, read some technical
articles, visit the newsgroups, take a look at the projects, and pick up the latest downloads. Don't forget to
check out the Eclipse Project FAQ and online documentation. You can find out about eclipse-related
events, projects, plug-ins and websites on the Community page. For software licensing, website terms of
use, and legal FAQs, please see our legal stuff page. Eclipse logos and graphics are found on our Jogos
page. And, our thanks to HP, IBM, Intel, Magrma and Movell for generous donations to our website
infrastructurel

August 29 - Eclipse Foundation and Sybase Announce Approval of Eclipse Data Tools Platform Project
August 22 - Eclipse Foundation Announces COT 3.0
August 22 - Download COT 3.0 Bead the Mew and Moteworthy |

http://www.eclipse.org/

Click on “Downloads” to get things started.

‘eclipse
home

about us -
projects eclipse.org
downloads ‘;
articles what's newve 2 LS
R Weicome | Click on “downloads”
carmmurity | W
search Welcome to eclipse.org
Eclipse is a kind of universal tool
bugs technical articles, visit the newsgr

can find out about eclipse-related «
For software licensing, website ter

The Eclipse download window will appear. Eclipse is constantly being improved
and new releases come several times a year. Usually the safest thing to download
is the “official” latest release. When this tutorial was created, the latest release was
Eclipse SDK 3.1

» . -
feclipse eclipse.org
home
about us H
| eclipse downloads
projects
downloads
articles Get Eclipse. Featured Downloads
Newsgroups If you're new to Eclipse, start by downloading the Eclipse SDK, then
mailing lists browse the warious project pages to find the useful toals and plugins that - Test and Performance Tools (TPTP)
§ you need. You will need a Java runtime environment {JRE) to use T T i S
3 . . = . (RCP)
community Eclipse. All downloads are provided under the terms and conditions of the
search Eclipse.org Software User Agreement unless otherwise specified. B
. ip i
S Download @ow: Eclipse SDK 3.1, windows [torrents]. Top-10 Eclipse Downloads
Other downloads for 3.1, | Eclipse project FRQ | Mewsgroups | 1. Eclipse SDi 31 (lstest release)

Docurmentation and help

2. Eclipse SDK 3.2M1 (latest
milestoneistakle]

Eclipse Project 3. Eclipse Modeling Framesvork (EMEY
Dowenloads | Project home

. 4. CiC++ Development Tools (C0T)
JDT - Java Development Tools: Downloads | Rroject home

PDE - Plugin Development Environment: DowNoads | Project 5. Graphical Bditor Pramework (GEF)
home &. Wisual Editor (VE)

Platform: Downloads | Project home

v IM')
Eclipse Tools Project Click on ECIipse SDK 3.1
to start download

Downloads | Project home
C/C++ IDE: Downloads | Project home
COBOL: Downloads | Project home (TPTF]

EMF: Downloads | Project home R

<

I@ ° Internet

When working with the Eclipse and CDT, it's important to be sure that the CDT plugin
you've selected is compatible with the Eclipse revision you also selected. Be sure to study
the Eclipse web sites to be sure that you have compatible revisions selected.

If you click on Eclipse SDK 3.1 where it says “Download Now:” shown above, this is the
Windows version of the download.

What appears next is a list of download mirror sites that host the Eclipse components. |
selected the University of Buffalo in my home town (and where | got my Master’s degree).

‘feclipse

home

When the mirror site starts the download process, you have to select a destination directory
to place the Eclipse zip file. In my case, | created an empty C:/scratch directory on one of
my hard drives (you could use any other drive as well).

eclipse downloads

Your preferred mirror appears to hawve this file: eclipse-SDI-3.0.2-win32. zip

United States
[United States] University of Buffalo CSE Departrment

Please select a mirror for this file: eclipse-SDK-3.0 2-win32 zip

Africa

[South Africa] University of Stellenbosch

Asia
[Japan] Japan Advanced Institute of Science and Technology
[Korea, Republic Of] Areum

Australia/Oceania
[Australia] Pacific Internet

| Great! This mirror
North America siteis in my home

[Canada] Groupe d'utilisateurs de Linux de I'JdeS

[Canada] Heachable ca
[United States] Calvin College (ftp)
T R A R e v macens.
Qﬂited States] University of Buffalo CSE Department
[Unie orares et
[United States] WV WER inc.

South America
[Brazil] Eclipseg@Rio, PUC-Rio

Main Download Site

Canada
hain eclipse.org downloads area

First click on Save below.

File Download

Do you want to open or save this file?

[|%|. Mame: eclipse-30K-3.1-win32.zip

Type: Compressed (zipped) Folder, 103 MB

From: Ftp.cse.buffalo.edu

Open (I[Save] Cancel]

Alwayz azk before opening this twpe of file

harm your computer. IF pou do nat trust the zource, do naot oper or

@ whhile files fram the Intemet can be useful, some files can paotentially
zave this file. WWhat's the nsk?

Now browse to the c:/scratch directory that you created previously.

Save As
Save in: |ﬁ seratch V| Q A

by Recent
Documents

Dezktop

My Dacuments

by Computer

-

File name: |eclipse-SDK-3.1 -win32

My Metwark, Save as type: |Enmpressed [zipped) Folder

Click on Save to start the download.

Now the download will start. Eclipse is delivered as a ZIP file. It's 103_megabytes in length
and takes 9 minutes to download with my broadband cable modem. If you have a dialup
internet connection, this will be excruciating. If you don’t have a cable modem high-speed
internet connection, | suggest you find somebody who does and go over there with a blank
CDROM and a gift.

7% of eclipse-SDK-3.1-win32.zip Completed [= |[0/[X]

Saving:

eclipse-50K-3. 1-win3Z2.zip From ftp,cse.buffalo.edu

O)
Estimated time left 7 min 33 sec (7.41 ME of 103 ME copied)

Download ko Cdownloadieclipse-3DK-3,1-win3z. zip

Transfer rake: 216 KBJ3ec

[] Close this dialog box when download completes

Open Open Folder

When the Eclipse download completes, you should see the following zip file in your scratch
directory.

@ scratch
File Edit Wiew Favarites Tools Help #
— =
e Back = |) L@ p Search E’; Folders ' % @ Uj Address
Folders X Mame & Size | Type Date Modified
[C3) DRIVERS | (B eclipse-50K-3.1-win3z 105,476 KB Compressed (zipped) Falder Q312005 10:52 AM
) eclipse
3 1386
2 My Music il

[Program Files

D source files |
< i | ¥

Eclipse is delivered as a ZIP file (eclipse-SDK-3.1-win32.zip). You can use WinZip to
decompress this file and load its constituent parts on your hard drive.
If you don’t have WinZip, you can get a free evaluation version from this address:

http://www.winzip.com/

There’s a decent Help file supplied by WinZip. Therefore, we're going to assume that the
reader is able to use a tool such as WinZip to extract from zip files.

http://www.winzip.com/

In my computer, with WinZip installed, double-clicking on the zip file name (eclipse-SDK-
3.1-win32.zip) in the Windows Explorer display above will automatically start up WinZip.
Click on “Extract” to start the Eclipse file decompression.

& WinZip (Evaluation Yersion) - eclipse-SDK-3.1-win32.zip

File Actions Options Help
== 'ﬁ e W = L {f/\!)_' F
Cipen Favorites Wig Checkout wizard
Tvpe Modified Size | Ratio Packed = Path S
! Executable 1... 6/27/2005 3:13 FM 1,402,943 5% 1,328,... eclpseiplug.
Executable 1., 6f27)200% 3113 PM 478,451 11%: 380,715 eclipseiplog,
pdebuild. jar Executable 1., 6/)27)2005 3:06 PM 230,330 A% 217,015 eclipsetiplug.
pdebuild-ant. jar Executable 1., 6/f27)200% 3:06 PM 27,816 10% 24,982 eclipseiplug.
Fragment. xml #ML Document &)27/2005 3:06 PM 325 36% 207 eclipse\plug.
phagin, xml wML Document &f27 2005 3:06 PM 257 30% 180 eclipse\plug.
Manifest ,mf MF File: Bf27 12005 3:06 PM 243 33% 162 eclipsetiplug,
fFragment, xml #ML Document 6)27 2005 3:06 PM 186 28% 134 eclipsetplug.
Manifest ,mf MF File Bf27 12005 3:06 PM 182 30% 127 eclipseiplug.
@ plhugin. xml ®ML Document &J27)2005 3:06 PM 186 28% 134 eclpselplug, ™
< e
Selected O files, 0 bytes Tokal 1102 Files, 112,5399KE 0

WinZip will ask you into what directory you wish to extract the contents of the zip file. In this
case, you must specify the root drive C:

Extract - C:\scratchleclipse-SDK-3.1-win32.zip

Extract ta: ||::'\ v|
PN

[__ |_:_|-nq.' Local Disk, ||:| b
. {E:I caphure
{E:I cypgwin B
o {EI DELL
‘-—] H-y Documents and Settings
L=y download
ty Documents =
¥ &) DRIVERS
_ {h eclipse
@ | 8= —l

kuy C k i i
w Computer Files (] Open Explorer window

Selected files/folders
(®) &l files/folders in archive

OFi (] 5kip older files
i Use folder names

[] Owenwrite existing files

Eﬁf

The WinZip Utility will start extracting all the Eclipse files and directories into a c:/eclipse
directory on your root drive C:

Estracting zrc.zip

Cancel

At this point, Eclipse is already installed (some things are done when you run it for
the first time). The beauty of Eclipse is that there are no entries made into the
Windows registry, Eclipse is just an ordinary executable file. Here’s what the
Eclipse directory looks like at this point.

® oclipse
File Edit Wiew Favoribes Tools Help ?
=
@ Back = () l.ﬁ p Search H’z‘ Falders = x % \E d
Falders = Mame - Size | Type Date Modified
= % Local Disk (C:) | [Chconfiguration Filz Folder 6/19)2005 7:00 PM
|E:| armlib B @Features Filz Folder 6/19)2005 7:00 PM
C aTI (Chplugins File Falder £/19/2008 7:00 PM
) capture Dreadme File Falder 61192005 7:00 PM
[EJ cyawin .edlipseproduct 1 KB ECLIPSEPRODUCT File 3/11/2005 9:15 AM
) DELL &]cplvin 15KE HTML Document 3/11/2005 9:15 &M
(L Documents and Settings EEC"IJSB G5 KB Application 311f2008 9:15 AM
3 download &]notice 6KB HTML Document 3(11/2005 9:15 AM
[C3) DRIVERS — [E] startup 20KE Executable Jar File 3(11/2005 9:15 AM

[C3) eagle companents
() EasvScreen

(53 configuration
[C3) Features
3 plugins
(£ readme
[£3) eclipse_download
[foo 3

You can create a desktop icon for conveniently starting Eclipse by right-clicking on
the Eclipse application above and sending it to the desk top.

% eclipse
File Edit ‘Wiew Favorites Tools Help
- [|
@ Back '_} l.@ /Q Search
Folders

E{':‘ Folders

X Marme

= Q Iy Computer
=) =ew Local Disk (C:)
1= armiib
=y aTI
[E:I capture
I DELL
|5 Documents and Settings
I download
) DRIVERS
1) eagle components
[ﬁ] EasyScreen
= E} eclipse
|23 configuration

~| Sy configuration

ME-X & D0

- Size

T [Chfeatures
Cplugins File Folder
Chreadme File Folder

Beclips Open 1 KB Configuration Settings
B eplyg RN A5 17KE HTML Document

— @]notics 2 winZip ' FKB HTML Document
skarty] Fin to Start menu 31 KB Executable Jar File

.eclipsepraduct

1 KB

92 KB Application

Scan for Wiruses

Right-click on the Eclipse
application and send it to
the desk top.

ECLIPSERRODUCT File

M ¥ Compressed (zipped) Folder

e ST TR T
5232005 10:59 P
5(13/2005 2:55 P
5(13/2005 2:55 P
5{13/2005 2:55 P
5132005 2:55 P
5132005 2:55 P
5({13/2005 2:55 P

&
B festoes c
) plugins Py) Mail Recipient

5 readme Create Shorkeut o\ Musicmatch Burner Plus

£ foo Delete [E:I My Documents
=) anu docs v L Renars -

— {3 ARMLIE (F:)
Propetties

Now is a good time to test that Eclipse will actually run. Click on the desktop icon to start

the Eclipse IDE.

If the Eclipse Splash Screen appears, we have succeeded. If not, chances are that the
Java Run Time Environment is not in place. Review and repeat the instructions on installing

Java on your computer.

The first order of business is to specify the location of the Workspace. | choose to place the
workspace within the Eclipse directory. You are free to place this anywhere; you can have
multiple workspaces; here is where you make that choice.

Workspace Launcher |E|

Select a workspace

Eclipse Platform stores wour projects in a directory called a workspace.
Select the workspace direckary ko use For this session,

;I Browse, .. |

Workspace:

[Use this as the default and do not ask again

Ik I Zancel

When you click OK, the Eclipse main screen will start up.

& Java - Eclipse SDK
Mavigate Search Project Run Window Help

Welcome to Eclipse 3.1

i
eclipse

HE |

If you made it this far, you now have a complete Eclipse system capable of developing
JAVA programs for the PC. There are a large number of JAVA books and some really good
ones showing how to develop Windows applications with JAVA using the Eclipse toolkit.

Eclipse itself was written entirely in JAVA and this shows you just how sophisticated a
program can be developed with the Eclipse JAVA IDE.

However, the point of this tutorial is to show how the Eclipse platform with the CDT plug-ins
can be used to develop embedded software in C language for the ARM microcomputers.

5 Eclipse CDT

Eclipse, just by itself, is designed to edit and debug JAVA programs. To equip it to
handle C and C++ programs, you need to download the CDT (C Development Toolkit)
plug-in. The CDT plug-in is simply zip files that are unzipped into the Eclipse directory.

Unfortunately, the CDT plug-in from the Eclipse web site has some problems
debugging applications in a cross-development environment (e.g. where the target
is a circuit board with an ARM microprocessor and a JTAG interface). To the
rescue is the Norwegian engineering company Zylin who have developed a special
custom version of CDT that properly interfaces the GDB debugger to a remote
target. The Zylin version of CDT was developed with the cooperation of the CDT
Development Team and is essentially a copy of the latest version of CDT with the
special debug modifications. The open source community owes a debt of thanks to
@yvind Harboe and his associates at Zylin.

To download the Zylin version of the CDT plug-in, click on the following link:

http://lwww.zylin.com/embeddedcdt.html

The Zylin website page devoted to the CDT plug-in will have a link to the latest “snapshot”.
This snapshot is two zip files that you will extract to the c:\eclipse folder.

2lin AS

Zyin soft CPU 9L =g

Hardwiare
Embedded software
eCos

Open source Eclipse CDT plugin

- Eclipse COT
- eCos and libstdc++

- Mailinglist

Eclipse COT has excellent DB support. However, there are a few stumbling blocks when trying to debug
embedded applications

Zylin has made some modifications in Eclipse COT for Windows + a plugin to improve support for GOBE
embedded debugging in COT for eCos applications.

Zylinwould like to extend a special thanks to Alain Magloire of the COT team for making this possible.

Download
o Click on this link to get the
Latest snapshot

N < latest Zylin CDT snapshot.
thﬁI Fﬂd

Q1 Is the plugin specific to eCos?
A No

1 Is the plugin specific to ARKM?

A Mo, In principle it can be used with any CPL that GDE supports.

1 Does the plugin worko under Linux?

Al Yes. You can even debug native applications that do not live inside CDT projects.
< Does the plugin work under Windows?

AlYes

Q Source?

A See inside the zvlincdt-200xmmdd zip archive.

Install

These plugins require the latest Eclipse 3.1 release.

Both plugins must be installed together

Delete previous COT and Zylin Embedded CDT directories from eclipsetfeatures and eclipse\plugins
directory

unzip embeddedcdt-200xmmdd zip and 2ylincdt-200xmmdd zip to the Eclipse directory.

http://www.zylin.com/embeddedcdt.html

Download the following two files from the Zylin web site.

http://www.zylin.com/embeddedcdt-20050810.zip
http://www.zylin.com/zylincdt-20050810.zip

[Zylin-discuss] embeddedcdt binary snapshot - CDT 3.0 - RC3

Dyvind Harboe oyvind harboe at zvlin com
Wed Aug 10001241 CEST 2005

o Previous message: [Zylin-discuss] dispplay the remote memory content.
o Mext message: [Zylin-discuss] embeddededt binary snapshet - CDT 3.1
s Messages sorted by: [date][thread | [subject][author

Changes:

— updated to CDT CV3 HEALD.

— before installing this wersion, take special care to delete:
- ®all® previous versions of the Zvlin CDT embedded plugin
- *all*® launch entries for the Iv¥lin CDT embedded plugin

Installation:

http://www. =ylin. com/enbeddededt . html

Download binarv:

Download these two
files to c:/scratch

r http://vww. zylin. com?zyllncdt 200505310, =zip <

|

Jource code;

In zylincdt-yyyymmdd.zip showve. The patches to CDT are in the files named
Morg.eclipse.cdt.debugy.mi.core. =t

@ywind Harboe
http://vww. zylin. com

First, click on http://www.zylin.com/embeddedcdt-20050810.zip to download. Then click
on “Save” in the File Download window.

File Download X
Do you want to open or save this file?

@ Mame: embeddedcdt-20050810.zip
Type: WinZip File, 11.2 MB
Frarm: v, 2vlin, com

P
[Open (l ’ Save l [\Eancel

Alwayz azk before opening thiz tepe of file

harm your computer. If you do not tust the source, do not open or

@ ‘While filez fram the Internet can be useful, zome files can potentially
zave this file. What's the nsk?

http://www.zylin.com/embeddedcdt-20050810.zip
http://www.zylin.com/zylincdt-20050810.zip
http://www.zylin.com/embeddedcdt-20050810.zip

Select the temporary c:\scratch directory as the target of the download and click “Open.”
Save As

Save in: | age Local Disk [C:) V| O _" =% [~
I3 &RM Cross Development with Eclipse [C3) TiniaRM
{ [C)capture CIWINDOWS
MyFecert | [CDeygwin [Ehzdowrload

Documents [CIDELL

o @Documents and Settings
@) download
I[CIDRIVERS
S)edipse
1386

’))My Music

Program Files
My Documents Dprog

Desktop

() source files

IC)5Pss
My.Elomputer (Dteme
_—
" File name: [embeddededt-20050810 | Q Open | >
Iy Netlwork Save as type: |WinZip File v | [Cancel T

The first Zylin CDT zip file will download into the c:\scratch folder. This file is an 11 Mb
download.

22% of embeddedcdt-20050810.zip Completed (= | 71/(X]

Saving:

embeddedcdt-20050310, zip Fram wee, 2ylin,com

LTI]
Estimated time left 1 min 38 sec (2,41 MB of 11.2 ME copied)

Download to: Ci\scratchembeddedecdt-20050810. zip

Transfer rate: 92.9 KBiSec

[] Close this dialog box when download completes

Open Open Fold

Next, click on http://www.zylin.com/zylincdt-20050810.zip to download. Then click on
“Save” in the File Download window.

File Download |'£|
Do you want to open or save this file?

@ Mame: zylincdt-20050810,Zip
Type: WinZip File, 173 KB

From: we, zylin.com

N
Open ﬂl Save] I_\ Carcel]

Always azk before opening this type of file

harm pour computer. If you do nat trust the zource, da not open or

@ Wwhile filez framm the Internet can be useful, zome files can patentially
zave thiz file. What's the risk?

http://www.zylin.com/zylincdt-20050810.zip

Select the temporary c:\scratch directory as the target of the download.

Save As

Save in: |E}scralch V| QF = -

LD embeddededt-z0050810

&

My Recent
Docurnents

My Documents

¢

by Computer

]
- 7
Q File: name: | I 0 k L Save
My Hehuork Save as type: |WinZip File: W | |__ Cancel

The second Zylin CDT zip file will download into the c:\scratch folder. This file is a shorter

file, only 173 Kb. _

o

[“1x

(=] Download Complete

Saved:

zylincdt-20050310, zip From wiw,zyvlin.com

(NSNS SN NSNS NN NN NSNS NNSENNEN SN AN |
Downloaded: 173 KB in 1 sec

Download to; Chscratchizylinodt-20050810,zip

Transfer rate: 173 KBJSec

[Claze this dislog box when download completes

l Open] [Dpen Folder] L Close]

Select both Zylin CDT files in the c:\scratch folder using Windows Explorer and use WinZip
to extract them to the c:\eclipse folder.

® scratch
File Edit Wiew Faworibes Tools Help ﬂ.
& =
@ Back - '_.4] lﬁ p Search E‘ Folders > % Llj Address
Faolders x Size Twpe Dake Modified
& 1386 A 0 11,497 KE WinZip File 9/3/2005 7:11 PM
2 My Music Open with WinZip 913/2005 7:26 PM
(3 Program Files = Print
3 scrakeh Explore
I3 source files b Browse with Paint Shop Pro Studio
¢ | 3 < ¢ Add Files to Library... | >
3 WinZip [) Add ko Zip File...
Scan For Viruses &3 Add to scrateh,zip
Add ko recently used Zip File »
" Convert to Adobe POF il P
Open With »| L Extract to here
] 3 Extract ko here using file names for falders
=end To) Extract ko Folder 3
Cut 3 Zip and E-Mail scratch,zip
Copy &3 7ip and E-Mail Plus. ..
3 Encrypt
Create Shortout 5 Configure

Delete

Rename

WinZip Extract

<
[«]
&

Eutract to: |E:'\ecli|:|se

= o= Local Disk () 3
L- {ﬁ ARM Crozs Development with Eclipze |
Desktop 3 capture il
E-C3) cogwin
B &3 DELL =
;) #-C3 Documents and Settings
My Documents .{ﬁ download
-0 1386 v
B

by Computer Files Ilze Zip file names for folderg >

Selected filez/folders . e
g] Oiverwrite existing files
Q (2 Al filesfolders in archive m

[15kip older files

by Netwark e |:| -
v Nebwar [#] Use Falder names

Places

To verify that Eclipse had the CDT installed properly, start Eclipse by clicking on the
desktop icon.
[

Eclipse 3.1

When Eclipse starts, click on “File — New - Project...”

& Resource - Eclipse SDK

GIEW Edit Refactor Mawigate Search Project Run Window
Alt+Shift+y # »
Cpen File. ..
% Folder =08
Close Chrl+F4 ©E
Clase al Chritshift+Fa | L
[Z Untitled Text File
[‘5‘] Save Chrl+5
B save as T Other... Ctrl+h
[save Al Chrl+Shife+5
Revert
Mave, ..
Rename... Fz
Refresh F5
Convert Line Delimiters To 4
& Print.., Chrl+P
=] -+l — = E
Switch Warkspace. .. el s
£y Impart... | Resource | In Folder | Locs
&7 Export...
Properties Alt+Enter
i | 3

When the New Project window appears, check if C and C++ appear as potential projects. If
this is true, Eclipse CDT has been installed properly.

& Mew Project

Select a wizard p—t>
Wizards:
‘@ Jawva Project
B Java Project From Existing Ant BuildFile
== Plug-in Developrment
&-Z= Simple
ik
< Back | Mexk = | Finish I Cancel |

If you don't see the C and C++ listed, here’s what might have happened. It's possible to
disable the CDT plug-in. To see where this may be done, click “Help — Software Updates
— Manage Configuration”.

Project Run ‘Window I!!!

@-@-Jﬁ;vcw‘elcome ===
|
1 @ Help Contents | @ crk.s | @ main. c | @ mé
B ,l"’* EEEEETTNN WSearch o o o o o o o o o o o
N Drynamic Help
FTEEERETELE o o o o o o o o o o o o o ﬁ‘ll."
Kevy Assist,., Chrl+shift-+L
void Initial Tipsand Tricks...
void feedivo Cheat sheets...

Saftware Updates 4 ,Qa Find and Install...

void IRQ Ro
void FIQ Eo About Eclipse 50K 2% Manage Configuration B
void SWI_Routine (void] __attribute__ ((interrupt ("3WI")));

If you click on Eclipse C/C++ Development Tools 3.1.0, you will see an option to disable
the CDT plug-in. If this has been disabled, use these menus to reverse this situation.

5% Product Configuration

File
@@ 5 - B @
E"uEi.. Ec"p:iescﬁ?sse Eclipse C/C++ Development Tools 3.1.0

| @ Eclipse CfC++ Dewelopment Tools 3.1.0 |
[+ 4+ Eclipse Project SDK 31,1

Eclipse C/C++ development tools, {Binary runtime and user documentation.)

Available Tasks
Scan for Updates

- ch for updates For this Feature,
CDT Plug-in would @
be disabled if / o0 can enable or disable the Functionality of & feature. The feature is not removed by this

somebody clicked action,
the “disable” option. Show Properties

Vigw properties of the Feature such as version, provider name, license agreement ek,

6 CYGWIN GNU Toolset for Windows

The GNU toolset is an open-source implementation of a universal compiler suite; it
provides C, C++, ADA, FORTRAN, JAVA, and Objective C. All these language
compilers can be targeted to most of the modern microcomputer platforms (such
as the ARM 32-bit RISC microcontrollers) as well as the ubiquitous Intel/Microsoft
PC platforms. By the way, GNU stands for “GNU, not Unix”, really — I'm serious!

Unfortunately for all of us that have desktop Intel/Microsoft PC platforms, the GNU
toolset was originally developed and implemented with the Linux operating system.
To the rescue came Cygwin, a company that created a set of Windows dynamic
link libraries that trick the GNU compiler toolset into thinking that it's running on a
Linux platform. If you install the GNU compiler toolset using the Cygwin system,
you can literally open up a DOS command window on your screen and type in a
DOS command like this:

>arm-elf-gcc —g —c main.c

The above will compile the source file main.c into an object file main.o for the
ARM microcontroller architecture. In other words, if you install the Cygwin GNU
toolset properly, you can forget that the GNU compiler system is Linux-based.

Normally, the Cygwin installation gives you a compiler toolset whose target
architecture is the Windows/Intel PC platform. It does not include a compiler toolset
for the ARM microprocessors, the MIPS microprocessors, and so forth.

It is possible to build a compiler toolset for the ARM processors using the generic
Cygwin GNU toolkit. In his book “Embedded System Design on a Shoestring”,
Lewin A.R.W. Edwards gives detailed instructions on just how to do that.
Fortunately, there are quite a few pre-built tool chains on the internet that simplify
the process. One such tool chain is GNUARM which gives you a complete set of
ARM compilers, assemblers and linkers. This will be done in the next section of
this tutorial.

It's worth mentioning that the GNUARM tool chain doesn’t include the crucial
MAKE utility, it's in the Cygwin tool kit we're about to install. This is why you have
to add two path specifications to your Windows environment; one for the
c:/cygwin/bin folder and one for the c:/programfiles/gnuarm/bin.

The Cygwin site that has the GNU toolset for Windows is:

WWW.Cygwin.com

http://www.cygwin.com/

The Cygwin web site opens as follows:

& | Cyewin Information and Installation - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help ﬁ'
Q- © R B G| Pmo oo @ 3% B-LID B
Address @ it e, cyguating, cammy Vl Go Links **
A
GNU + Cygnus
+ Windows =
Cygwin Home What Is Cygwin? C
Cyzwin/X Home o hustall
Cygwin 12 a Linuz-like envirottnent for Windows, It conststs of two patts: Cygrin
Eed Hat Cygwin o A DLL (cygwinl dll) which acts as a Limuz AFT emulation layer prowiding substantial Linuz APT il N
Product finctionality,
Comrmunity + A collection of tools, which provide Limux look and feel
;m%iss—m'g The Cygwin DLL worlks with all non-beta, non "release candidate”, =86 32 bit wversions of Windows since
Windows 95, with the exception of Windows CE.
e Dlailing Lists
s Unofficial What Isn't Cygwin?
Hewsgroups
. + Cygwin is not a way to run native hnuz apps on Windows. ¥ ou have to rebuild your application frawms
o Iirror Sites soures f you want to get it running on Windows.
. + Cygwin i3 not a way to magically make native Windows apps aware of TNE{ ® functionality, like
SR alions signals, ptys, etc. Again, you need to build your apps_from source ff you want to take advantage of
Documentation Cygwin finctionality,
+ FAQ . . .
Help, contact, web page, other info... Histenical cygwin info. .
e zer's Guide
s APl Reference
get help on find a package ot
* Acronyms using of filein the cygwin
ol setup.exe. release.
* Snapshots Latest Cygwin DLL release versioniz 1.5.16-1
& Jource in CV3 3
—l —
@ B Internet

The first thing to do is to click on the install icon:

We need to download the setup executable and automatically run it.

File Download - Security Warning
Click on “Run” to
download and run

Mame: setup.exf the Cng|n Setup
Type: Applicatign, 279 KB program

Fram: v, cydain, com

Do you want to run or save this file?

[Fun][)Save]l_ Canicel]

P While files from the Internet can be uzeful, this file type can
9 potentially harm your computer. IF you do not trust the source, do not

T or zave thiz software, What's the rigk?

Now the Cygwin wizard will start up. Select “Next” to continue.

- Cygwin Setup

Cygwin Net Release Setup Program

T hiz wizard will guide you through the installation and updating
aof the Cygwin environment and a plethora of GHU packages.

cC

Setup.exe version 2427

Copyright 2000, 20001 Red Hat Inc.
http: #f2ources redhat. comdcogwing

N
% Back 6 Mest »

Cancel

Choose “Install from Internet” and then click “Next.”

Cygwin Setup - Choose Installation Type

Choose A Download Source
Chooze whether ta inztall ar davenload fram the intemet, or install from files in =
a lozal directary,

&+ Install from Internet
" Download from Internet

™ Install from Local Directon

/7~ ™\

< Back 6 Meut » |\ Cancel |

Now we specify a directory where all the downloaded components go, our c:/scratch folder
will do just fine.

= Cygwin Setup - Select Local Package Directory

Select Local Package Directory
Select a directory where you want Setup to stare the installation files it

downloads. The directary will be created if it does not already exist.

Lacal Package Directory

IC.\scral:h Browse...l

N\

< Back ﬂ Mext » h Cancel |

AV Vi

~~_
Since | have a high speed internet connection, | always select “Direct Connection.” Click
“Next” to continue.

= Cygwin Setup - Select Connection Type

Select Your Internet Connection
Setup needs to know how pou want it to connect to the intemnet. Choose
the appropriate settings below.

" Direct Connection
= Use IES Settings
= Use HTTP/FTP Proxy:

Proxp Host I

Part ISD

e
<Back/| Mext > \I Cancel
3\ yA

Now the Cygwin Installer presents you with a list of mirror sites that can deliver the Cygwin
GNU Toolkit. It's a bit of a mystery which one to choose; | picked http://planetmirror.com
because it sounds cool. You may have to experiment to find one that downloads the
fastest. Click “Next” to continue.

= Cygwin Setup - Choose Download Site(s)

Choosze A Download Site
Choose a site from thiz lizt, or add your own sites to the list

Available Download Sites:

hittp: # fmirror. mes. anl. gow

hittp: # fmirror. pacific. net. au

hittp: / fmirrors. dotarc.org

hittp: / fmirrors. kemel org

hittp: / fmirrors. ren. net

http: / fmirrors theonlinerecordstore. com

[

P/ SOUTCES-Tednal. i ar. (e gwire. ne
http: / fzourcewane mirrors. tds.net
hittp: /Ay, carfield, com, bk
hittp: # A mirror, ac.uk,
hittp: # A, signald 2. com

|

Uzer URL: Add

< Back I Mext > I Cancel |

http://planetmirror.com/

Cygwin will download a few bits for a couple of seconds and then display this “Select
Packages” list allowing you to tailor exactly what is included in the down load.

= Cygwin Setup - Select Packages

Select Packages
Select packages to download
" Keep O Prev ™ Cur © Exp View| Cateqgary
Cateqaory Current M ew Bi.. | 5r... | Package |i
+ 4l &% Default

+ Admin &% Default

+ Archive &% Default

+ Baze & Default B
+ Databaze & Default

+ Devel & Default

+ Doc & Default

+ Editorz £% Default

+ [3ames & Default

+ [nome &% Default
< 2

(£

¢ Back | et = | Cancel

The screen above allows you to specify what GNU packages you wish to install.
Basically, we want an installation that will allow us to compile for the Windows XP / Intel
platform. This will allow us to use Eclipse to build Windows applications (not covered in this

document). Remember that we’ll be installing the GNUARM suite of compilers, linkers etc.
for the ARM processor family shortly.

If you look at the Cygwin “Select Packages” screen below, you'll see the following line.

+ Devel 4% Default

You must click on the little circle with the two arrowheads until the line changes to this:

!
+ Devel &¥ [nstall

This will force installation of the default GNU compiler suite for Windows/Intel targets.
Here’s the “Select Packages” screen before clicking on the circle with arrowheads.

The following four packages must be selected and changed from “default” to “install.”

Archive O Default Archive Q Install
Devel O Default Devel O Install
Libs O Default Libs QO Install
Web O Default Web QO Install

Click on the little circle with the arrowheads until you change the four packages listed above
from “default” to “install.” You should see the screen displayed directly below. Note that
the Archive, Devel, Libs and Web components are selected for “Install”. Everything else is
left as “default.”

~ Cygwin Setup - Select Packages

Select Packages
Select packages to install -

 Kesp © Prev & Cur ¢ Ewp Wiew| Category
Category | Current | Mew | Bi...l Sy ”

+ Al & Default
+ Admin &% Default
+ Baze & Default
+ Dlatabaze 4% Default
+ Doc & Default
+ Editors &% Default
+ Games &% Default
+ Graphicz &% Default
+ Interpreters £% Default
+ Mail & Default
+ Math & Default
+ Mingw & Default
+ Met & Default
+ Publizhing & Default
+ Shellz &% Default
+ Spstern £ Default
+ Text &% Default
+ Litilz &% Default
+ 217 &% Default
+ 2z RemovedPackages &% Default
+_PostlnzstallLaszt £% Default

< Back ﬁewtm Cancel

Click “Next’ to start the download.

Now the Cygwin will start downloading. This creates a huge 700 Megabyte directory on
your hard drive and takes 30 minutes to download and install using a cable modem.

99% - Cygwin Setup

Progress
This page dizplays the progress of the download or installation. it

Downloading. ..

Package: |

Total]
Disk: [

< Back | et » | Cancel |

When the installation completes, Cygwin will ask you if you want any desktop icons and
start menu entries set up. Say “No” to both. These icons allow you to bring up the BASH
shell emulator (like the command prompt window in Windows XP). This would allow you do
some Linux operations, but this capability is not necessary for our purposes here. Click on
“Finish” to complete the installation.

Cygwin Setup - Create Icons

Create lcons
Tell zetup if you want it to create a few icons for convenient access to the -
Cygwin environment.

[~ Create icon on Desktop
[T Addicon to Start Menu

_—,
¢ Back (Finish h Cancel | -

A A

Now the Cygwin installation manager completes and shows the following result.

Cygwin Setup @

Installation Complete

Ok

The directory c:\cygwin\bin must be added to the Windows XP path environment
variable. This allows Eclipse to easily find the Make utility, etc.

Using the Start Menu, go to the Control Panel and click on the “System” icon.

Then click on the “Advanced” tab and select the “Environment Variables” icon. Highlight
the “Path” line and hit the “Edit” button. Add the addition to the path as shown in the dialog
box shown below (don't forget the semicolon separator). The Cygwin FAQ advises putting

this path specification before all the others.

Edit System Variable

Yariable name: Path

Wariable walue: cHcwgwint bing ooy gwiniuseiocalbing 36GSyws

i 21K i| Cancel J

We are now finished with the CYGWIN installation. It runs silently in the background and
you should never have to think about it again.

7 Downloading the GNUARM Compiler Suite

At this point, we have all the GNU tools needed to compile and link software for
Windows/Intel computers. It is possible to use all this to build a custom GNU compiler suite
for the ARM processor family. The very informative book “Embedded System Design on a
Shoestring” by Lewin A.R.W. Edwards ©2003 describes how to do this and it is rather
involved.

Fortunately, Rick Collins, Pablo Bleyer Kocik and the people at gnuarm.com have come to
the rescue with pre-built GNU compiler suite for the ARM processors. Just download it with
the included installer and you're ready to go.

Click on the following link to download the GNUARM package.

www.gnuarm.com

The GNUARM web site will display and you should click on the “Files” tab.

SUPPORT RESOQURCES

“Steve is one of the brightest guys I've ever worked with - brilliant; but when we decided to dv a microprecessor on our own, I made twe great decisions - I gave them [Steve Furber and SOpme Wilson two things
wihich Wational, Intel and Motorals had never given their design teams: the first was no money; the second wes no people. The only way they could do & was to keep i really simple.” -= Hermann Hauser

Last update: 2004-07-05 18:01
GNU ARM toolchain for Cygwin, Linux and MacOS

Welcome! In this page you will find a pre-compiled binary distribution for the {hopefully) latest GHU ARM/Newlib toolchain for Cygwin, Linux and Macds,

The toolchain consists of the GNU binutils, compiler set {GCC) and debugger (Insight for windows and Linux, GDB only for MacOS). Mewlib is used for the C library. The toolchain includes the © and C++ compilers.
Details of the build process appear here. The Windows installer executable files are generated with Inno Setup. The MacOS toolchain is bundled with apple's PackageMaker.

If you have any problems using these files please contact us using our mailing list,

Please note: Some people have been asking us for permission to re-distribute the GHNUARM installer and associated files slong with their cornmercial products. This is totally encouraged provided that the software
licenses are fulfilled and that there are no charges except for, possibly, a small fee for the media and handiing. In this way pou wilf be helping both the GNUARM project and your custormers.

Also note that we have avoided purely-commercial pointers in our projecis section at our rescurces page, To be fair with everyone, we will be only adding links to projects that provide useful, unbiased, technical
information onfine, Contact us i pou wish pour site to be listed there,

The correct package to download is Binaries Cygwin — GCC- 4.0 toolchain

Binaries

53CC-3.3 toolchain

Mac 05 ©
binutils-2.14, goe-3,3.2-c-c++, newlib-1.12.0, gdb-6.0, PKG TGZ [35,2 MB]

GCC-3.4 toolchain

Cygwin

hinutils-2.15, goe-3.4.3-c-c++-java, newlib-1.12.0, insight-6.1, setup.exe [17,0MB]
GMUSLinuyx (x86)

hinutils-2.15, goo-3.4.3-c-c++-java, newlib-1.12.0, insight-6.1, TAR BZ2 [56,0MB]

GCC-4.0 toolchain

Cygwin
binutils-2.15, goe-4.0.0-c-c++, newlib-1.13.0, insight-6.1, setup.exe [23 OMB]

http://www.gnuarm.com/

Just like all the other downloads we've done, we direct this one to our empty download
directory on the hard drive. Here we click “Save” and then specify the download
destination.

File Download - Security Warning

Do you want to run or zave thiz hle?

Mame: bu-2.15_gec-4.0.0-c-c++_nl-1.13.0_gi-5.1.exe
Type: Application, 23.0 ME

From: WAL QRIL AT, COorm

H@EI]

il YWhile files from the Intermmet can be useful, thiz file type can
G potentially harm your computer. [F pou do not trust the source, do not

i ar gave thiz zoftware. What's the risk?

Once again, our c:/scratch directory will suffice.

Save As

Save it |@ scratch V| & ¥ = -

KMy Recent
Documents

E

Deszktop

\$

by Documents

-

by Computer

__ —,
! File name: I:nu-:?;'. goc-d.0.0-cc++ nl-1.13.0 W | [Save
by M etk Save az ype: |.-'l'-.|:||:-|i|:ati|:|n w |

As you can see, this download has a very long name!

L

This download is a 18 megabyte file and takes 30 seconds on a cable modem.

32% of bu-2.15_gcc-4.0.0-c-c++_nl-1.13.0... [2]0[[X]

Sawing:

vt _nl-1,13.0_gi-6, 1. exe From s, gnuarm, com

Estimated time left 2 min 3 sec (7,25 MB of 23.0 MB copied)
Cowenload to: nobu-2,15_gec-4.0.0-c-c++_nl-1.13.0_gi-5.1.exe
Transfer rate: 131 KBj3ec

[] Clage thiz dialog box when download completes

Open Open Folder

The download directory now has the following setup application with the following
unintelligible filename: bu-2.15 gcc-3.4.1-c-c++-java_nl-1.12.0 _gi-6.0.exe

Click on that filename to start the installer.

® scratch X
File Edit Wiew Favorites Tools Help ﬁ'
" . i
@ Back ~ () l.‘ﬁ; p Seatch ‘ E{i‘ Folders ' x % | |j
Faolders X Marme
) pictures P E’i:‘]l:uu-z.15_|;||:|:-41:I.D-n:-|:++_nl-1.13.III_|;|i-E-.1
I3 Program Files =
2 scrateh
[T Y Z
< | |* £ >
— _ __

Click on this
application to start
the GNUARM
installer

The GNUARM installer will now start. Click “Next” to continue.

%X Setup - GNUARM B

Welcome to the GNUARM Setup
Wizard

Thiz will install GHUARRM 4.0.0 on vour computer.

It iz recommended that you clogze all other applications befare
continuing.

Click Mewxt to continue, or Cancel to exit Setup.

e —

N\

L Mext = J |) Cancel

Accept the GNU license agreement — don’t worry, it's still free. Click “Next” to continue.

i Setup - GNUARM

License Agreement " J

Pleaze read the fallowing impartant infarmation before continuing.

Fleaze read the following License Agreement. You must accept the berms of this
agreement before continuing with the installation,

GMU GEMERAL PUELIC LICEMSE |
Version 2, June 1931 ==

Copyright [C] 1333, 1331 Free Software Foundation, Ihc,
59 Temple Place, Suite 330, Boston, kA 0211711307 LUSA

Everpone iz permitted to copy and distribute verbatim copies
af thiz icense document, but chanaing it iz not allowed.

Freamble
The licenzes far most software are designed to take away wour |
{(*) | accept the agreement
(3| do not accept the agreement
P
/[N\
[< Back(]L Ment > ,] D Cancel]
N 4
~——

We’'ll take the default and let it install into the “Program Files” directory. Click “Next” to
continue.

7 Setup - GNUARM

Select Destination Location H

Where zhould GMNUARM be installed?

I-’J Setup will ingtall GHUARM inta the following folder.

To continue, click Mext. [F pou would like to gelect a different folder, click Browse,

|D:\Program Files\GNUARM | [Browse.. | [

At least 52,9 MEB of free dizk space iz required.
 —

/ N\
[<Ba|:k(]L Mext » JD Cancel]
A

We’'ll also take the defaults on the “Select Components” window. Click “Next” to continue.

77 Setup - GNUARM

Select Components
YWhich components should be installed?

Select the components pou want to install; clear the components pou do not want bo
inztall. Click Mext when you are ready to continue,

| Full installation v
Litthe Endian FEOME & |
- [#] LE Libraries 97 ME
| - [#] Mo Fagt Multiplier 98ME = =
- |#| ARM-THUME |ntenworking 98 ME —
- [+] THUME 18.9 MB

- [#] THUME Libraries 3.5 MB
- [] SRM-THUME Intenworking 3.5 MB

- [#] Floating Paoint Linit 230 ME
[V FPU Libraries 97 MB ™

Current zelection requirez at least 218.9 ME of disk zpace.

P
/ N\
[<Ban& JL Mext = JDEanceI J

Take the default on this screen. Click “Next” to continue.

2 Setup - GNUARM

Select Start Menu Folder
Where thould Setup place the program's shortcuts?

Setup will create the program's shortcuts in the following Start Menu folder.

To continue, click Mest. If vou would like to select a different folder, click Browse.

| GNUARM | [Browse.. |

P —

yd
[< Back (]L MHext » D Cancel]

A

s ——

It's very important that you don’t check “Install Cygwin DLLsS” below. We already have the
Cygwin DLLs installed from our Cygwin environment installation. In fact, the ARM message
boards have had recent comments suggesting that the Cygwin DLL installation from within

GNUARM has some problems.

Since all operations are called from within Eclipse, we don’t need a “desktop icon” either.

Click “Next” to continue.

7= Setup - GNUARM

Select Additional Tasks ~

Wwhich additional tazks zhould be performed’?

Select the additional tazks pou would like Setup to perform while installing GHUARM,
then click Mest.

Additional icons:
[] Create a desktop icon
Cygwin optionsg:

[] Ingtall Cygwin DLLz

T~
[<Back(]L M ent = JD Cancel J
A

Click on “Install” to start the GNUARM installation.

i Setup - GNUARM

Heady to Install
Setup iz now ready to begin instaling GHUARKM on vour computer.

Click Inztall bo continue with the ingtallation, or click Back if you want to review ar
change any sethings.

Destination location;
[:MProgram Files\GHUAR R

>

Setup bype:
Full installation s

Selected components;
Little Endian
LE Libraries
Mo Fast Multiplier
ARM-THUME Interworking
THURMB

S
[<Eau:|<(JL Inztall J Cancel J

Sit back and watch the GNUARM compiler suite install itself.

iR Setup - GNUARM

Inztalling
Pleasze wait while Setup install: GNUARM an your computer.

Extracting files...
C:%Program Filesh\GMUARMMncludehc++44.0.0%backward\heap.h

Cancel

When it completes, the following screen is presented. Make sure that “Add the
executables directory to the PATH variable” is checked. This is crucial.

% Setup - GNUARM -]

Completing the GNUARM Setup
Wizard

Setup has finizhed instaling GHUARM on vour computer. The
application may be launched by zelecting the installed icons.

Click Finish to exit Setup.

Add the executables directory to the PATH waniable

e —

This completes the installation of the compiler suites. Since Eclipse will call these
components via the make file, you won’t have to think about it again.

It's worth mentioning that the GNUARM web site has a nice Yahoo user group with
other users posing and answering questions about GNUARM. Pay them a visit.
The GNUARM web site also has links to all the ARM documentation you’ll ever
need.

8 Installing the Philips LPC2000 Flash Utility into Eclipse

The Philips LPC2000 Flash Utility allows downloading of hex files from the COM1
port of the desktop computer to the Olimex LPC-P2106 board’s flash (or RAM)

memory.

We need to download the latest version of this program from the Philips web site
and unzip and install it into the program files directory. Then we will start Eclipse
and add the LPC2000 Flash Utility as an external tool to be invoked.

Click on the following link to access the Philips LPC2106 web page.

www.semiconductors.philips.com/pip/LPC2106.html

The following web page for the LPC2106 should open.

PHILIPS

YOUR COUNTRY A J CONSUMER FRODUCTS FROFESSIONAL FRODUCTS

v | seancH I >

P PHILIPS SEMICONMDUCTORS Mews Center | Markets | Key Tachnologies | Products | Jobs | Cormpany Profile |

- I I Product Information

Product Categories

Information as of 2004-07-10

+Analog and mixed-
signal devices

= Audio
= Buz devices
Clodks & Watches

= [ata
Communications

#[izcrete modules
* [iscretes
* Display drivers

#|dentification &
Sacurity

= Laogic

= Microcontrollers
#Feripherals
=ideo

=ifired
Communications

=liire|ess
Communications

Stay Download
informed datasheet

H Datasheet
K Ermailftranzlate
H Dizclaimer

E General description E Features
i Block diagram

E Products & packages

E Applications
K Support & tools

E Parametrics H sirnilar products

B General description

The LPC2104, 2105 and 2106 are based on a 16/37 bit ARM7PTDMI-S CPU with real-time emuolation and
embedded trace support, together with 128 kbytes (kB) of embedded high speed flash memoary. & 125 bit
wide mermory interface and a unigue accelerator architecture enable 32 bit code execution at maximum
clock rate, For critical code size applications, the alternative 16-bit Thumb Mode reduces code by more
than 30pct with rinirmal performance penalty,

Due to their tiny size and low power consurnption, these microcontrollers are ideal for applications where
rminiaturization is a key requirement, such as access control and point-of-sale. With a wide range of serial
carrnunications interfaces and on-chip SRAM options up to 64 kilobytes, they are very well suited for
comrunication gateways and protocol converters, soft modems, voice recognition and low end imaging,
providing both large buffer size and high processing power, Various 32 bit timers, PWwM channels and 32
GPIO lines make these microcontrollers particularly suitable for industrial control and medical systems,

B Features

Key features

® 16/32 bit ARM7TDMI-S processar,

samniier oastar b ® 1A2A4 kR nn-chin Static RAM.

http://www.semiconductors.philips.com/pip/LPC2106.html

If you scroll down this page, you will see a link to the LPC2000 Flash Utility
download. Click on the ZIP file LPC2000 Flash Utility (date 2004-03-01)

B Support & tools

LPZZ104 Single Chip 32-bit Microcontroller Erratasheet{date 2004-06-01)

LPC2105 Single Chip 32-bit Microcontroller Erratasheet{date 2004-06-01)

LPCz2106 Single Chip 32-bit Microcontroller Erratasheet{date 2004-06-01)

LPC2104 Erratasheetidate 2003-12-10)

LPC2105 Erratasheet{date 2003-12-10)

LPC2106 Erratasheetidate 2003-12-10)

Philips Microcontraller Line Card({date 2004-03-05)

LPC2104/2105/2106 Leaflet{date 2004-02-24)

Philips -- The Innovation Leader in Mocrocontrollers{date 2004-06-30)
LPC2106/ 21052104 User Manualidate 2003-09-17)

LPZ2000 Flash Utility{date 2004-03-01)

ElweesiiE |Developrment Tools for LPCZ100 devices{date 2003-05-21)

As before, we'll save the downloaded zip file in our empty c:/scratch directory. This is a
fairly short download, only about 2 megabytes.

File Download E|

L |) ouare downloading the file:
-

Ipc2000_flash_ukilits. zip From wis , semiconductors. philips, com

“Whould you like to open ile or gave it to your computer?

[Open Save Cancel] [Mare [nfa

Always azk before opening this twpe of file

32% of lpc2000_flash_utility.zip Completed = || |[X]

Saving:

Ipc2000_flash_ukiliey, zip Fram weas, semiconduckars, philips, com

Estimated time left 26 sec (628 KB of 2,00 ME copied)
Download ko Cscratchi|pc2000_Flash_utiliey, zip
Transfer rate: 54.5 KB'5ec

[] Cloge this dialog box when download completes

Open Open Folder

We'll use WinZip to unzip this into the c:/scratch directory.

21 WinZip (Evaluation Version) - |pc2000_flash_utility.zip

File Actions Options Help

EBeVOD e I

e Cipen Favorites Add Extract Encrypt W e Install Wizard
Hame Type Modified Size | Ratio| Packed | Path
1 SSEUJ[:I.E}{E Install applic... 771542000 12:00 AM 139,776 52% B87,174
| I:aLF'CElI:I.‘x{_ISF'.C.-ﬁ.E- WinZip File S/17/2004 11:21 M 2,041,643 1% 2,029,.
Seb.lp.lst LST File 5/17/2004 11:22 AM 4,001 79% g825
Selected O files, O bytes | Total 3 files, 2,135KB Q0 .

Now you can see that the download directory has a setup utility and another zip file
containing the LPC2000 Hex Utility. Click on the setup.exe application to start the
installer.

® scratch

File Edit Wiew Fawvorites Tools Help

@Eack - ,_;l l‘r Searn:h ‘Eli" Folders

Folders = Mamne
| |n-2000_Flas

L LALIL

FE-X $ B3

sh_ukility

= = Local Disk (C:)

I armiib .
B O ATl Click on setup to
I3 capture start the installer
I DELL
I3 Documents and Setti w
< | > <
S — —

lv

The LPC2000 Flash Utility setup now starts. Click on OK to proceed.

LPC2000 Flash Utility Setup

= LPC2000 Flash Utility Setup X

@ welcome bo the LPC2000 Flash Utility installation program.
o

Setup cannat install system files or update shared files if they are in use,
Before proceeding, we recommend that yvou close any applications you may
be running.

Exit Setup

Take the default on this screen below and let it install the LPC2000 Flash Utility into the
Program Files directory.

= LPC2000 Flash Utility Setup
egin the installation N

clicking the button below,

destingrion directory,

C:Program Files\LPCZ 106 ISP, hange Direckory | |

Exit Setup

In a very few seconds, the installer will complete and you should see this screen.

LPC2000 Flash Utility Setup [ZI

LPCZ2000 Flash Utility Setunwas completed successtully,

Here we see the utility residing in the Program Files directory, just as promised.

® LPC2106 ISP X
! File Edit WYiew Favorites Tools Help >

eBack & @ - l@ pSearch %Fulders ' x x

 Address |Ei| D:\Program FilesyL PC2106 TSP v.| G0

Folders x Mame - Size | Type Date Modified
& W Lrc2i0x ISP 616 KB Application 5/17/2004 10:28 AM
= @ sTeuNST IKB TextDocument 7/11/2004 1:55 AM

& (53 Program Files
®) 2215tudios
@ [Adaptec
@) Adobe
@ [AIMIS
@ 3 America Online 7.0
@) America Online 8.0
@ [America Online 2.0a
& [A0D
& £ AOL Companion
@ £ &pplied_Insights
@ S ATI Multimedia
@ [ATI Technologies
@ 3 Autodesk
& D AWS
@ [Common Files =
£ ComPlus Applications
B 3 Futuris Imager
®) Gemstar
@ D GHUARM
£ Google
® D HP
@ [IMsI
@ £ InstaliShield Installatia
& [Internet Explorer
@ 3 iPod
@ 3 iTunes
@) Java
3 LPC2106 15P

[Meccphner ()

£ 11}] L=

Now that the Philips LPC2000 Flash Utility is properly installed on our computer,
we’d like to install it into Eclipse so that it can be invoked from the RUN pull-down
menu under the “external tools” option. Start Eclipse by clicking on the desktop
icon.

l:‘

Eclipse 3.1

The layout of the Eclipse screen is called a “perspective.” The default perspective
is the “resource” perspective, as shown below.

" Resource - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

IBI~-HEe |~ |2 |ecro-

We need to change it into the C/C++ perspective. In the Window pull-down menu,
select Window — Open Perspective — Other — C/C++ and then click OK.

" Select Perspective |z|

< Bgcic++
BT Browsing

E=CYS Repository Explaring
35 Debug

ﬁJJava

15 1ava Browsing

o4 1ava Tvpe Hierarchy
=J=Plug-in Development
[5Resource (defsulty

&P Tearm Synchronizing

G\ﬁ\ w Cancel
7

Eclipse will now switch to the C/C++ perspective shown below and will remember it
when you exit.

* CIC++ - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
IBn-HEe |¢ R |H~-0-Q~|®F |-~ | BEc/c+ =
C/C++ Projects =8 9= Outline 22751 =l
o - - | G:b - An outling is not available,
B¢ Problems 2 CDnsoIe|Pererties| X ~~=0
0 errors, 0 warnings, 0 infos
| Description Resource
i| 1l] l|
I |

Now we want to add the Philips LPC2000 Flash Utility to the “External Tools” part
of the Run pull-down menu. Select RUN — External Tools — External Tools.

CIC++ - Eclipse Platform

File Edit Mavigate Search Project REEGE WWindow Help

|rg~ E | & & | %5 + @ @ Run Last Launched CirkF11

C/C++ Projects m .:.: %, Debug Last Launched F11

= | = % < RunHistory »
Run As 3
Fun...

Debug History »
Cebug As r
Debug...

¥. External Toals Fun As »
@, External Tools...
Organize Favorites...

We want to add a new program to the External Tools list, so click on Program and
then New.

* |[External Tools

Create, manage, and run configurations

Create a configuration that will run an Ant buildfile, %

Configurations:

food [=

- Program

H Perspectives

These settings associate a perspective with Ant Build launch configurations. A
different perspective may be associated with each supported launch mode, and can
optionally be activated when a configuration is launched or when a breakpoint is
encountered via the Debug preferences, To indicate that a perspective switch
shiould not occur, select "None".

Rur: |N|:|ne Ll
Restore Defaults |

4
l Mew | Delets ~pply | fizlides |

Fun I Close |

Note below that there’s a new program under the “program” tree with the name
New_configuration and there’s no specifications as to what it is.

In the Name text box, replace New-configuration with LPC2000 Flash Utility.
In the Location text box, use the “Browse File System” tool to find the Philips

LPC2000 Flash Utility in the Program Files directory. Its name is
LPC210x_IPC.exe.

Here’'s the External Tools window before editing.

" [External Tools

Create, manage, and run configurations
Please specify the location of the external tool vou would like to configure. %
Configurations: Marme: |New_c0nﬂgurati0n
-4 Ant Build
E(L Frogram
B i i P
-G New_configuration = tain | ¥ Refresh I B En\flronmentl =] Commonl
~Location:
Browse Waorkspace... | Browse File Systarn... | Yariables... |
—Working Directory:
Browwse Waorkspace. .. | Browse File Systern... | Yariables... |
—Arguments:
Yariables... |
Motz: Enclose an argument containing spaces using double-quotes (),
e Delate Apply | Revert |
R I Close |

Here’s the External Tools window after our modifications. Click on Apply to accept.

" External Tools X

Create, manage, and run configurations

Create a configuration that will run a program. %

Canfigurations: Mame: ILPC2DDD Flash LUitility
-3 Ant Build
=@ Program
b i - .
@ New_configuration =l main |n:> Refreshl -} Enwronmentl =| Commonl
r—Location:

| OeYProgram FilesyLPC2106 ISPYLPC210x_ISP.exe

Browse Waorkspace... | Browse File System... | Yarizbles... |

—Working Directory:

Browse Workspace... | Browse File System... | Yariables... |

—Arguments:

Yarizbles... |

MNote: Enclose an argument containing spaces using double-quotes ("),

=1 Delete (Apply D Revert |
4
i

Run Close |

Close everything out and return to the Run pull-down menu. Select Run — External Tools
— Organize Favorites.

& CIC++ - Eclipse Platform

File Edit Mavigate Search Project QR ‘Window Help

et~ E | & X |3~ G @, Run Last Launched Cir+F11
C/C++ Projects | ©Mavigator &2 =| % Debuglastlaunched Fit

= | G 4 RunHistory r
Run As 2
Run...
Debug History *
Debug As 3
Debug...

¥_ External Tools Run &s >
@ External Tools,.,

Organize Favarites...

We’re now going to put the Philips PLC2000 Flash Utility into the “favorites” list.
Click on “Add” in the window below.

" Organize External ... z|

Favarites:

Up

Doty

()4 Cancel

Click the selection box for LPC2000 Flash Utility. This will add it to the favorites list.

r Selection Needed

Select Launch Configurations:

[#1q LPC2000 Flash Utility

Select All | DeselectAIIl

Now when we click on the Run pull-down menu and select “ External Tools,” we
see the LPC2000 Flash Utility at the top of the list.

& CIC++ - Eclipse Platform
File Edit MNavigate Search Project RGN "Window Help

| m5 - [| & &F | % ~ G @ Run Last Launched Cirl+F11 & | /o 2
Debug Last L hed F11 S O=
C/C++ Projects | B MNavigator 22 = | % Debug Last Launche 5= Outling 52 =8
: * | [F % + RunHistory 4 an outline is not available.
RN Ag 3
Run...
Debug History 4
Debug As »
Debug. ..

¥. External Tools 00 Flash Utility

Run &g 4
@, External Tools...
Crganize Favorites. ..

0 errars, 0 warnings, 0 infos
| Description Resource

< i | >

Click on LPC2000 Flash Utility to verify that it runs.

C/C++ - Eclipse Platform
File Edit

|- HE |6 SX |[$-0~Q~ |®F 0o -

Mavigate Search Project Run Window Help

=21 @Cﬁc++

CAC++ Projects | G5 Mavigator 52 Eﬂf

£ LPC2000 Flash Utility

File Buffer

Help

m LPC2000 Flash Utility V2.2.0
— Flash Programming — Eraze / Blank — Communication
Filename: _ _ Connected Ta Port:
ID:"\ecIipse'\wnlkspace'\test'\main.he:-c Blark Check &+ Entire Device IEDM'I: - l
~ Selected Sectars
Bl e lse Baud Rate;
Headic s = after Upload Start Sectar: I_E' |192DD M
Eraze I—
Compare Flash M anual Reset | Bl et 14 Time-0ut [zec]: I 2
— Device Uz DTR/RTS
Dervice: i I for Reset and
ILF'C21 04 I Fead Part ID: H Boot Loader
=TaL Freq. [kHz]: |14?45 Device ID Boat Loader |D1I Selection

1]
—

4| i

Now cancel the LPC2000 Flash Utility and quit Eclipse.

9 Installing the Macraigor OCDremote Utility

OCDRemote is a utility that listens on a TCP/IP port and translates GDB monitor
commands into Wiggler JTAG commands. Macraigor has always made this utility
available on the internet as “freeware.” The OCDRemote utility can be downloaded
at:

http://www.macraigor.com/full gnu.htm

You should see the following screen open up.

]
L]
“nnnmnn [Home][Yiew Cart] [Site Map][Contact][Legal]

OCDemon™ from
Macraigor Systems

Make your debugging
a little bit easier ...

[Home][Hardware Products] [Software Products] [CPUs] [Tools, ete.][Partners] [News]

Flash Programmer GMU Tools...

Batch Flash Programmer
Target Access DLL
J-SCAMN ITAG Debugger
JTAG Commander
Yalidator

0CD Commander

http://www.macraigor.com/full_gnu.htm

If you scroll the above screen down a bit, you should see the download for
OCDRemote. Click on the link “DOWNLOAD Windows OCDRemote v2.14".

Make sure you download OCDRemote version V2.14 since this is the
one that supports hardware breakpoints.

Click on “Run” so it will download and immediately install OCDRemote.

File Download - Security Warning

Do you want to run or save thiz hle?

— Hame: hwsupport-2,14.exe
Type: Application, 3.00 ME

Fram: ws, ocderman, com

[Run JD Save] L Cancel J

patentially harm pour computer. [F you da not trust the source, da not

@ whhile files from the Internet can be useful, thiz file tupe can
run or save this software, What's the risk?

The download phase is quick since the OCDRemote is only a couple of megabytes.

17% of hwsupport-2.14.exe Completed
Opening:

Fwsuppark-2, 14, exe Fram wisw, ocdeman . comm

LT]
Estimated time left 32 sec (513 KB of 3,00 MB copied)

Download ko Tempataty Folder

Transfer rate: 78.2 KBlSec

[] Cloze thiz dialog box when download completes

Open Open Falder

The Macraigor installer should start up; click “Next” to continue.

Macraigor Systems Hardware Support Package 2.14 - InstallShield Wizard |E|

Welcome to the InstallShield Wizard for

Macraigor Systems Hardware Support Package
2.14

The InstallShield® Wizard will install Macraigor Spstems
Hardware Support Package 2.14 on vour computer. To
continue, chick Mest.

< Back [Mext -][Canicel]

The next screen lets you choose where OCDRemote is installed. OCDRemote
normally installs in c:/cygwin/usr/local/bin.

We'll have to make sure that this directory is on a Windows Path.

Click on “Next” to accept c:/cygwin/usr/local/bin as the OCDRemote installation
directory.

Macraigor Systems Hardware Support Package 2.14 - InstallShield Wizard |E|
Choose Destination Location i

Select folder where setup will inztall files.

G Inztall Macraigor Spztems Hardware Support Package 2,14 to;

C:hoypgwintusrilocalsbin

[rztallShield ————

V- N\
[<Ban:l(]L Mext = J) Cancel

u

Clicking on “Install” will complete the OCDRemote installation.

Macraigor Systems Hardware Support Package 2.14 - InstallShield Wizard |E|

Ready to Install the Program
The wizard iz ready to begin installation.

Click Inztall to begin the installation.
[pou want ko review or change any of your installation settings, click Back. Click Cancel to exit
the wizard.
InztallShield /’ \\
[< Eau:l(]L Iristall] D Cancel]

-——

The Wizard completion screen lets you restart your computer to put OCDRemote into the
Windows registry.

InztallShield Wizard Complete

The InztallShield Wwizard has successfully installed b acraigor
Syztemns Hardware Support Package 2.14. Before you can
Lze the program, you must restart your computer,

(%) Yes, | want to restart my computer now,
{3 Mo, | will restart my computer later,

Remove any dizks from their drives, and then click Finizh to
complete zetup.

Macraigor, Systems Hardware Support Package 2.14 - InstallShield Wizard

Cancel

Just like the Philips ISP Flash Utility, we should install the Macraigor OCDremote

utility as an “external tool” that can be accessed easily from the Eclipse CDT RUN

pull-down menu.

Start up Eclipse and, if necessary, switch to the C/C++ perspective by clicking

“Window — Open Perspective — Other — C/C++.” In a procedure similar to installing

the Philips Flash Utility as an “External Tool”, click on “Run — External Tools —

External Tools ...”

This will bring up the External Tools dialog.

= CIC++ - Eclipse Platform

File Edit Mavigate Search Project JEULE Window Help

J i - J - g% - I£I<> %Run Last Launched
» =g %, Debug Last Launched

| Egoic++

F | = <‘:===> -l Eun :istory
un As
Run...

Debug Histary
Debug As
Debug...

¥_ External Tools

Organize Favarites., .

o, B0 50

An outling is not available.

E_\ Problems 22 Console | Propetties |

0 errors, 0 warnings, 0 infos

I Descripkion

| Location |

Click on “New” and replace th

e name with OCDremote. Use the “browse file

system” to find it. It should be in the directory c:/cygwin/usr/local/bin.

The arguments needed to pro

-cCARM7TDMI-S
-p8888
-dWIGGLER
-al

-s4

perly start the OCDremote are as follows:

specifies the CPU being accessed

specifies the pseudo TCP-IP port being used
specifies the JTAG hardware being used

specifies LPT1 for the Wiggler

specifies 100 khz speed (-s8 is the slowest speed)

You will probably want to experiment with the speed setting. Click on “Apply” to finish the

setup.

& External Tools

Create, manage, and run col

Run a program

N\

B>

=

nfigurations

Configurations;

4 At Build

E% Pragram
-G, LPC2000 Flash Uil
% Mew_configuration

Z

b4

N
Marne: |OCDremote
\
< I-C:'l,cygwin'l,usr'l,lncal'l,bin'l,ocdremote.exe
orkspace. .. BrnwseFiIeSystem...l Variahles. .. |

& main | t" Refresh I % Ervironment I E Common I

— Locatinos

—wworking Directory:

Browse Warkspace. .. | Browse File Svsten, .. | Variahles. .. |

’7 \
- Arguments: N

-CARMFTDMI-5 -pEdad -dWIGGLEF‘w

‘Variables, ., |

Moke: Enclose an argument containing spaces using double-quates (),

Delete

1

e
(Apply D Reverk |
4

O —

Run I

Close

Just like the Philips LPC2000
application in our list of “favor

Flash Utility, we’'d like to include the OCDremote
ite” External Tools. This allows us to quickly start the

OCDremote JTAG server from within Eclipse.

Click on “Run — External Tools — Organize Favorites”

£ CIC++ - Eclipse Platform

File Edit Mavigate Search Prffject UGN Window Help

- B | lgorce+

8= ou.., B

Jr‘j - & | 5! J@ S WﬁtLaunched Cri+F11 Ig & J“: o
» =g %, Debug Last Launched F11

F | = <'===l> - Fun History 4

3
-1 demo2106_blink_flash Run fs
#-1=% demoz106_blink_ram Run...

Debug History 4

Debug As 3
Debug

¥.. External Tools

3 @czuoo Flash Utility
-

—

P -

Problems | B Console 22

<kerminated > C:\Program Files\GHUARMIDIN

Run As

]

PEG Erternal Tools. ..

Organize Favorites. ..

=

An outline is not available,

N
| 5% |G bE| 2 B

- -0

Now click on “Add...” in the Organize External Tools ... window and follow that by
checking “OCDremote” in the Add External Tools Configurations: window. Click on
“OK” to add the OCDremote to the list of favorites.

Organize External Tools ...

Favarites:

@, Lrc2000 Flash iftiit,

Add...

Cancel

Add External Tools Favorites

Select Launch Configurations:

Mew configuration
CnZDrernoke

Select Al | Deselect .C\II|

o]

Cancel |

Now verify that the OCDremote is in the list of External Tools favorites. Click on
“Run — External Tools” and see that it's now included in the list of favorites.

& CIC++ - Eclipse Platform
File Edit Mavigate Search Project JEUGE Window Help

J r‘j - [| ! J @ o Eﬁ . %RunLastLaunched Chrl+Fi1 b ,9"‘ J W =, ==, ﬁ @CIC++ >
» = %, Debug Last Launched F11 = 0Bz oy, 21 = 0O
= | = <}==(> -l Fun History 4 -
'E; demoz106_blink_Flash Run fs ' An outline is nok available,
F-125 demoz106_blink_ram Run...
Debug History 3
Debug As 4
Debug...

¥ External Tools G 1 LPC2000 Flash Utility

CDremoke

Fun fAs 4
Problems | B consale &2 F‘ru:perl:ie(EEXtE""'E|I Taals... & | Ex g'—ﬁ | = E-f5-=0
<terminaked:> C;\Program Files\GHUAR Organize Favorites,..

Now is a good time to point out that there’s a handy shortcut button in Eclipse to run the
External Tools. Click on the External Tools button’s down arrow to expand the list of

available tools.
Q& -

= CIC++ - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

I-Hole|a-8-8-@-|%-0-Q- |®F |- Click on either of the
oo, K1 S0 1 LPC2000 Flach Lty | external tools to start
B ." | = % - F_ z OCDremate them runnlng_
E-i demo2106_hlink_flash Run s 4
-2 demaz106_blink_ram % External Taols. ..

organize Favorites, .,

EEE B Console X Propetties a I:—?i|| #E2-r5-70

_-Build [demoz106_blink_ram]

10 Verifying the PATH Settings

There is one final and very crucial step to make before we complete our tool building. We
have to ensure that the Windows PATH environment variable has entries for the Cygwin

toolset, the GNUARM toolset and the OCDRemote JTAG server.

These are the three paths that must be present in the Windows environment:

c:\cygwin\bin
c:\program files\gnuarm\bin
c:\cygwin\usr\local\bin

To verify that these paths are present in Windows and to make changes if required, start

the Windows Control Panel by clicking “Start — Control Panel”.

B Control Panel

File Edit View Favortes Tools Help

OBaEk \) lf pSearch {C" Folders - X % |D [ﬁ

=1E
[
)
BOE Date and Time

ey & £ D @ 9 &

Accessibility Add Hardware Add ar Administrative Automatic
Ba Swikch to Category Yiew Options Remay... Tools Updates
. " . g
R w2 ow
Ganm

Intel

See Also
Display Falder Options Fants &Me
“ windows Update Controllers Modem-on-..,
@) Help and Suppark: u"ﬂ.-
. S & ®)
=
Internet Java Keyboard Mail Mause
Options

Madern ... Devices Faxes

Firewall Metwork Set...

L & % & e

Phone and Portable Media Power Options Printers and QuickTime Rei

220 9

Scanners and Scheduled Security Sounds and Speech
Cameras Tasks Center Audio Devices
8 @ <
User Accounts Windows ‘Wireless

Administrator

[T

IntelR) IntelR)
Extrem... PROSet Wired

e &

Metwork Metwork Setup
Connections Wizard

-
=

Regional and

%8

System Tagfbar and

2 |

Now click on the “Advanced” tab below.

System Properties .

System Restore Automatic Updates
General Computer Mame H Hardwear || Advanced

-
System:
Microsoft Windows HP
Home E dition
Wersion 2002
Service Pack 2

"
as

Registered to:
Jim Lynch

PE477-0EM-0011903-00102

Manufactured and supported by: Dell Dimension DIM3000
IntellR]

Pentium[R] 4 CPU 2.80GHz
ML 2.79 GHz. 512 MB of RaM
T

Now click on the “Environment Variables” button.

System Properties

| System Restore || Automatic Updates || Remate
| Gemeral | ComputerMame | Hardware | Advanced

“V'ou must be logged on ag an Administrator to make most of these changes.

Ferformance

Vigual effects, processor scheduling, memary usage, and virtual memory

Seftings
User Profiles
Desktop settings related to your logon
Settings

Startup and Recovery

Swstem startup, system failure, and debugging information

Seftings

< ’ Erwironment ' ariables] [) Error Reporting]

[(] _H Cancel] Apply

In the Environment Variables window, find the line for “Path” in the System Variables box
on the bottom, click to select and highlight it and then click on “Edit”.

Environment Yariables

Ilser wariables For Jim Lwnch

Yariable Yalue

TEMF

C:\Documents and Setkingst Jim Lynchil. .
TP

Ci\Documents and Settings)Jim Lynchil...

System variables

Yariable Yalue b
MUMEER_OF_P... 1
o5 windows T

PROCESSOR_A.., xd6

£

P —
mew ([edt | Deete |

[Ok][Cancel]

Take a very careful look at the “Edit System Variable” window (the Path Edit, in this case).

Edit System Variable

Variable name: | Path |

Yariable value;

L cyguainibing c: Yprogram filestgnuarmibin;: |

[(9] 4 H Cancel]

You should see the following paths specified, all separated by semicolons. The path is
usually long and complex; you may find the bits and pieces for GNUARM interspersed
throughout the path specification. | used cut and paste to place all my path specifications at
the beginning of the specification (line); this is not really necessary.

You should see the following paths specified.

c:\cygwin\bin;c:\program files\gnuarm\bin;c:\cygwin\usr\local\bin

If any of the three is not present, now is the time to type them into the path specification.

I've found that not properly setting up the Path specification is the most common mistake
made in configuring Eclipse to do cross-development.

This completes the setup of Eclipse and all the ancillary tools required to cross develop
embedded software for the ARM microcomputer family (Philips LPC2000 family in specific).

If you stayed with me this far, your patience will soon be rewarded!

Or as Yoda would say, “Rewarded soon, your patience will be!”

11 Creating a Simple Eclipse Project

At this point, we have a fully-functioning Eclipse IDE capable of building C/C++
programs for the ARM microprocessor (specifically for the Olimex LPC-P2106
prototype board).

We will now create an Eclipse C project called “demo2106_blink_flash” that will
blink the board’s red LED_J which is I/O port P0.7. This demo uses no interrupts
and runs totally out of onboard flash memory. It has been intentionally designed to
be as simple and as straightforward as possible.

Click on our Eclipse desktop icon to start Eclipse.

Eclipse 3.0.2

Eclipse should start and present the C/C++ perspective as shown below. If not, select
“Window - Open Perspective — Other - C/C++” to change to the C++ perspective.

& CIC++ - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

i Bl -a8-8-@-|%-0-Q-|®@s |- o [Eercr+ »

An outline is not
available.

-

o 5
=

Problems | Bl Conscle 53 Properties | Search + F - =2 H

Caonsole

To create a project, select File — New — New Project - Standard Make C Project from the
File pull-down menu and click “Next” to continue.

£ CIC++ - Eclipse Platform

FEM Edit Mavigate Search Project Run Window Help
Al+shift+l ¥ . - »
= New Project
8
Select a wizard |—
)))) — :
g Create a new C Project which uses a simple makefile. [
. —ll
Wizards:
(3% Java Project
b B Plugein Project
2R =g
i @ Managed Make C Project
(=] Standard Make C Project
F = CH+
Switch Workspace.., . =
) H-= V5
Open External File... H
E> Java
g Import..., [#-{z=> Plug-in Development
7 Export... B-(= Simple
1 lpc210x.b [demoz106] =
2 main.c [demoz106] g
3 main.map [demoZz106]
4 demoz106.cmd [demoz106] bir
Exit
< Back I Mexk = I Firish Cancel

You should see the “New Project” dialog box and enter the project name
(demo02106_blink_flash) in the box as shown below. Click on Next to continue.

£ New Project E|

C/Make Project
™,

Create a Mew C Project using 'make’ to build it = c]

Project name: | demo2106_blink_flash

Project conkents
v Use default

| il

| Mext = | Finish Cancel
\ Vi

~—

The New Project dialog box appears next. If you click on the “Make Builder” tab, you'll
notice that Eclipse build command is “make.” Make is provided by the Cygwin GNU tools.

New Project §|

C/Make Project Settings
b n

Define the project and ‘make’ builder settings = c I

Make builder settings.

1= Projects Make Builder ‘Errur Parsers | Binary Parser | Discovery Options] ChC++ Indexer]
|

Build command

v R Take the default on the “Build
Command”, Eclipse will always
issue a “make” command to
build your project.

Build command; <

Build Setting
[Stop on First build errar,

‘Workbench Build Behavior
‘“Waorkbench build bype; fMake build target:

[Build on resource save (auta Build) |

Mote: See Workbench automatic build preference.

[+ Build (Incremental Build) |a|| ———m These are the targets
that “make” will run
when you hit the Build
All, Build Project or
Clean toolbar buttons.

W Rebuild (Full Build [clean all - <

v Clean | clean —

< Back ‘ | Finish | Cancel |

Let's remind ourselves that we installed the Cygwin GNU tools earlier in the tutorial and the
Windows Explorer will show that the make.exe file is indeed in the directory c:/cygwin/bin,
as shown below.

File Edit View Favorites Tools Help

@Back ~ ol 'ﬁ' /.-" Search |:|. Folders ' x ;% L|2| llj

Folders X Marme Size Type Dakte Modified #*
3 capture A IsdiFF 1KE Syskem fil= SI7/2005 11:45
= 25 cygwin Flhyr 1,279 KB Application BIZ8/2004 4.4
= 3 bin Flma 84 KB Application 4/5/2005 8:28
) dluirexarples : mail-files ZKE File B15/2003 6:25
) ete mailshar 3KE File g/15/2003 625
&) lb i make | 145K6 Application 5/21j2003 1:3€
53 tmp Fmakegeo &6 KE Application 10{10/2004 7:5

Fmakeinfa 190KE Application 4{11/2005 2:45
| £ >

This is a good time to point out the differences between “Build All", “Build Project” and
“Clean.”

Build All Will execute the command “make clean all.”
It will first clean (delete) all object, list and output files.
Then it will rebuild everything, whether needed or not.

Build Project will execute the command “make all.”
This will not clean (delete) anything.
It will only compile those source files that are “out-of-date.”

Clean Will execute the command “make clean.”
Will clean (delete) all object, list and output files.

& CIC++ - Eclipse Platform =13
File Edit Mavigate Search BEESEES Run wWindow Help

B | Bgoic++
Close Project

%Resnurce

B Build Al Ctri+E RN
Build Project ~—
Build Working Set 3 An outlin is ok
available,

Clean... =
Build Automatically Propetties | Search - 8
Create Make Target. ..

Build Make Target...

Froperties

Jdemoz106_blink_flash

This is no different from opening up a DOS command window and typing the command in
directly, such as.

> make clean all

If you click “Finish” on the “New Project” dialog, Eclipse will return to the C/C++
Perspective.

Now the C/C++ perspective shows a bona fide project in the “C/C++ projects” box
on the left. As of now, there are no source files created.

& CIC++ - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

| i W | @-&8--G- |H#-0-Q- |®F |5 |CG-0- B | Bcrct+ i

=5 23' »1 =
= = e an outline is not
2k available.

Problems | Bl Consale 52 Properties | Search B =0

|Console

IdemoZ 106 _blink_flash

We can now use Eclipse/CDT’s import feature to copy the source files into the project.

Assuming that you successfully unzipped the “demo02106_blink_flash.zip” project files
associated with this tutorial to an empty directory such as c:/scratch, you should have the
following source and make files in that directory.

@ scratch

File

Edit Wiew Faworites

@Back L >) .? /‘._.1' Search ‘[[__ Falders

Falders

& (5 Program Files
scratch

&) system downloads

B) WINDOWS
) zclipse
[# % Local Disk (D)

Tools Help
X #%RE@
x Mame Size Type Date Modified

~ Bt 7KE 5File 51142005 11:13 AM

i demu:-2106 4 KB Windows NT Command Script 5f12§2005 12:28 AM
[Z] Ipcz 1 13KB HFile 5/14/2005 12:51 PM
) main 4KE CFile /142005 12:45 PM

= makeﬁle 1KE File 5/13/2005 1:06 AM

v £ | >

Click on the “File” pull-down menu and then click on “Import.” Then in the “Import”
window, click on “File System.”

E-CfC++ -

Eclipse Platform

SN EJit Mavigate Search Project Run Window Help

60 0 i

Exit

ale+3hift 4+

Switch Workspace. ..
ternal File...

1 lpc2i0x.h [demozi106]

2 main.c [demoz106]

3 mainmap [demaz106]

4 demoZ106.cmd [demoz106]

3

-

Select
Import resources From the local file system E d ﬂ

Select animport source:

ﬁcheckout Projects from WS

s Existing Ant Buildfile

ﬁExisting Project inko Workspace
LgLExternal Features

-ins and Fragments

[Zip File

il = Consols

| Mexk = | Cancel

When the “Import — File System” window appears, click on the “Browse” button. Hunt for
the sample project which is stored in the c:/scratch/ directory.

£ Import |§|
Fle system
Source must nok be empty. B
7 \J

From directory: & Browse...)ll
~——

Filter Types, ., | Select Al Deselect Al |
Into folder: I demoz106_blink_flash Brawse... |
Options

[~ Overwrite existing resources without warning
" Create complete Folder skruckure

& Create selecked Folders only

< Back Mexk = | Finish I Cancel

Click on the directory “scratch” and hit the “OK” button in the “Import from directory”
window on the left below.

Import from directory

Select a directory to import from.,

[=) = Local Disk (C:) s
I armlib
) ATI
IC5) capture
53 cvgwin
| DELL
|C5) Documents and Settings
=) download
|C) DRIVERS

g :ag'esmmpﬂne“ts Click on “Select All” in the Import window below right to
asyacreen

) eclpse get the source files selected for import into our project.

15 Foo

1) 1386
=2 mema ;
= My Music | £ Import El
la pictures

File system
.

Please specify Folder B

-

[WINDOWS

150 zdlipse b
Frorn directory: |C:'I,scratch ﬂ Browise. ..

Folder: | scrakch |
(7= scratch [Slerts

(e .
[Make Mew Foldar] [Ok l D Zancel] E;i;?ﬂziu: G

[€] main.c
[makefile

A 4

Filter Types. < Select Al ’ Deselect Al |

N——

Inko Foldet: |

Browse. ..

Opkions:
[Owerwrite existing resources withouk warning
™ Create complete Folder strocture

(¥ Create selected folders anly

= Back, | | | Cancel |

Now we have to indicate the destination for our source files. Click on “Browse” on the line
to the right that says “Into Folder:”

The proper destination folder appears in the Import Into Folder window below.

Click on the folder name “demo02106_blink_flash” and click “OK.” The directory name
“demo2106_blink_flash” should appear in the text box.

£ Import Into Folder fg|

Select a folder to import inka,

| demoz 106 _blink_Flash

[a] 4 | Cancel |

=
_—

Now the Import dialog is completely filled out; we can click on “Finish” to actually import the
source files into our project.

File system

f
Import resources From the local file system,
-l
From directory: | Ciiscratch | Erowss.,
[F (= scratch [Slerts

3] demoz106.cmd

@ lpczit.h

[main.c

[makefile
Filter Types... | Select All Deselect Al

Inka folder: | demoz106_blink_flash

Erowse. .,

Options:
™ Overwrite existing resources without warning
" Create complete Folder structure

¥ Create selected Folders only

% Back | ‘ Finish , Cancel

e

Now the C/C++ perspective main screen will reappear. Click on the “+” expand symbol in
the navigator pane to see if our files have been transferred.

]

& CIC++ - Eclipse Platform =13
File Edit Mavigate Search Project Run Window Help

£ - o | & ~65 - [- @ - H#-0-Q- | ™ |[E B oo+

e ooy r [Resource

ﬁ§CIC++ Projects 52) e 1| Il P »1 = ml
g An outling is not

HS~ available,

:)7 demaz106_bink_flash

| Problemns BESEsE
| (CBuild [demo21

Success is at hand, the expanded Projects view in the Navigator pane on the left shows our
imported files.

& CIC++ - Eclipse Platform
File Edit Mawigate Search Project Run Window Help

= = (= & : 5 I
- b | @~ 8% [@ - F-0-Q- @5 |E = | Ggcic++
% [resource
(2 % =0
| outine s ot |
available,
#-[15 Includes
- [H] Ipc210z.hb
- (5] erts = =i - : =
. @ i Problems | El consale 2 F_‘ropernes | Search | a & | =L g
derma2106.crnd C-Build [demo2106_blink flash]
K makefile

Jdemoz106_blink_flash

This is a good place to identify the imported source files.

Description of Project Files

Ipc210x.h Standard LPC2106 header file
crt.s Startup assembler file

main.c Main C program

makefile GNU makefile

demo2106 blink flash.cmd

GNU Linker script file

12

Description of the LPC210X.H Include File

Let's look at the Ipc210x.h header file. Double-click on it in the Project pane on the left’

ARM peripherals are memory-mapped, so all I/O registers are defined in this file so you
don’t have to type in the absolute memory addresses.

£

=

LI o1

B8 C)C++ Projects 54

= demo2106_blink_flash

+ Includes
+-[H] Ipc210x.h

+-[8] crt.s

+-[€] main.c

demoz106.cmd

[makefile

Mavigate Search Project
-8~ - - :ﬁva%v =
= 0/ [€]lpcz1ox.h &2

&

CiC++ - lpc210x. h - Eclipse Platform
File Edit

Run ‘Window Help

- ;; ~
#~ LPC218%.H: Header file for Philips LPC2184 ~ LPC2185 ~ LPC2186
s
Ids
Bifndef _ LPG218x_H
Bdefine __LPC218x_H
#% Jectored Interrupt Controller (UIC) -

Bdefine UVICIRQStatus (x{{wolatile unsigned long *> BxFFFFF@B@)>
Bdef ine VICFIQStatus (#((wvolatile unsigned long =) BxFFFFF@A4)>
Bdefine UICRawInte (x{{wolatile unsigned long *> BxFFFFFBA8>
Bdef ine UVICIntSelect (®((wolatile unsigned long *> BxFFFFFBAC)>
#define UICIntEnable (#({wolatile unsigned long *> BxFFFFF@1@)>
Bdef ine UIGIntEnCle (#((wolatile unsigned long *> BxFFFFF@14>
#define UICSoftlInt (#({wolatile unsigned long %> BxFFFFF@18)>
Bdef ine VIGSoftIntClyr <(*((wolatile unsigned long *> BxFFFFFA1C>>
#define UVICProtection <(#({wolatile unsigned long *> BxFFFFFB@2@)>
Bdef ine UIGUectAddr (#((wolatile unsigned long *> BxFFFFFA38)>
Bdefine VICDefUectAddr (*((wolatile unsigned long *> BxFFFFFA34))>
#def ine UVIGUectAddrd {(*((volatile unsigned long *> BxFFFFF188>>
Bdef ine UVICUectAddrl (%((wolatile unsigned long *> BxFFFFF1084))
#def ine UVICUectAddr2 {(*((yvolatile unsigned long *> BxFFFFF188>>
Bdef ine UVICUectAddr3 (%((polatile unsigned long *> BxFFFFF18C)>
#def ine UVICUectAddr4 (*((yplatile unsigned long *> BxFFFFF118)>
Bdef ine UICUectAddrs (*((wolatile unsigned long *> BxFFFFF114)>
Bdefine UVICUecthddré (#({yolatile unsigned long *> BxFFFFF118)>
Bdef ine UICUectAddr? (*((wolatile unsigned long *> BxFFFFF11C)>
Bdefine UVICUecthddrd (x(({yolatile unsigned long *> BxFFFFF128)>
Bdef ine UVICUectAddr? (*((wolatile unsigned long *> BxFFFFF124))>
Bdefine UICUectiiddrid <(={({wolatile unsigned long *> BxFFFFF128)>
Bdef ine UICUectAddril (*((wolatile unsigned long *> BxFFFFF12C)>
Bdefine UICUectiiddrli2 <(={({wolatile unsigned long *> BxFFFFF13@)>
Bdef ine UICUectAddrl3 (*((wolatile unsigned long *> BxFFFFF134)>
Bdefine UICUectiiddrid <(={({wolatile unsigned long *> BxFFFFF138)>
Bdef ine UICUectAddrls (*((wolatile unsigned long *> BxFFFFF13C)>
#define UICUectCntlA (#({wolatile unsigned long %> BxFFFFF280)>
Bdef ine UIGCUectCntll (#((wolatile unsigned long *> BxFFFFFZ@4)>
#define UICUectCntl2 (#({wolatile unsigned long *> BxFFFFF288)>
Bdef ine UVIGCUectCntl3 (#((wolatile unsigned long *> BxFFFFFZAC>
#define UICUectCntl4d (#({wolatile unsigned long %> BxFFFFF21@)>
Sdefine UICUectCntls (*((volatile unsigned long x) BxFFFFF214)) v
< b3
Problems Properties | Search

& | Eecice+

5| o= outline 52 b

liim]

HERR R R BBBEEEEEEEE SR SRR RS

=0

Elaxe ~
_LPCPIOXH &
EXTINT
EXT'WAKE
I2C_TZADR
I2C_T2COMNCLR
I&C_T2C0MSET
I2C_I2DAT
I2C_I125CLH
IaC_I25CLIL
I2C_I25TAT
IOCLR
IODIR
IOPIM
IOSET
MAMCR.
MAMMAP
MAMTIM
PCOM
PCONP
PINSELD
PIMSEL1L
PLLCFG
PLLCON
PLLFEED
PLLSTAT
PAM_CCR
PAM_CRO
PYM_CRL
PAWM_CR2
PIWM_CR3
PAMM_EMR
PAWM_IR

=

_-Build [demoz 106_blink_flash]

13 Description of the Startup File CRT.S

Now let’s look on the startup assembiler file, crt.s. Double-click on it.
This part of the crt.s file has some symbols set to the various stack sizes and mode bits.

= Resource - crt.s - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

Jrjv_ |@J%vJQ"J“. A b S & | [4Resource
T Mavigator 53 =d m - O

&) | B % — S R R R R R R R R AR TR R R A R A R A AR A AR R R R R A R T AR R AR R A A R A AR AR AR AR AR A AR A AR A AR T AR AR A AR AR AR ATARA AT A

1% demoz106_blink_flash

_____ 2 .cdproject crt.s STARTUP ASSEMELY CODE
..... 2 .project
kst
..... El eto
----- @ crk.s Module includes the interrupt vectors and start-up code.
demaz106_blink_flash.cmd
..... @ Ipc210:x.h L R s sy |
..... @ main.c
=| main.dmp /% dtack Sizes */
ma?n.hex .set UND_STACK SIZE, 0x00000004 /* stack for "undefined instruction” interrupts is 4 hytes */
main.map .set ABT_STACK_SIZE, 0x00000004 /% stack for "skhort" interrupts is 4 bytes *f
=l main.a .set FIQ STACK SIZE, Ox0000000% /% stack for "FIQ" interrupts 1is 4 bytes Wy
""" £l main.out .set IRQ_STACK SIZE, DZ00000004 /% stack for "IRQ" normal interrupts is & bytes w
[]--é“gm:;?gglfblinkjam .set 3VC STACK SIZE, Ox00000400 /* atack for "SVCT supervisor mode iz 1024 hytes i

/* Standard definitions of Mode bits and Interrupt (I & F) flags in P3FEs (program status registers) */

.set MODE_USE, 0x10 /% Normal User MNode */
.set MODE_FIQ, Ox11 /% FIQ Processing Fast Interrupts Mode *f
.set MODE_IRQ, 0xlz /% IRQ Processing Standard Incerrupts Node i
.set MODE 3VC, Ox13 /¥ Zupervisor Processing Software Interrupts Mode =/
.set MODE ABT, Ox17 /* Abort Processing wemory Faults Mode i
.set MODE UND, Ox1B /¥ Undefined Processing Undefined Instructions Mode =i
.set MODE 3Y3, Ox1F /% System Running Priviledged Operating System Tasks Mode +/
.set I BIT, Ox30 /% when I bit is set, IRQ is disabled (program status registers)
.set F_BIT, Ox40 /% when F bit iz set, FIQ is disabled (progrsam status registers)
-
< | >
Tasks | Bl Console 53 Q[—?u|‘._.’a'r<j':'ij

C-Build [demoz 106 _blink_flash]

This part of the crt.s file sets up the interrupt vectors.

Note that all of the code and data that follows goes into the .text section. It is also in ARM
32-bit code (not Thumb).

One label is made global, _startup. This will be available to other modules in the project
and will also appear in the map.

The GNU assembler doesn’t require you .extern anything. If a symbol is not defined in the
assembler file, it is automatically assumed to be external.

The vector table is 32 bytes long and is required to be placed at address 0x000000.

You will see later in this tutorial that the interrupt service routines referenced in the Vector
Table are just endless-loop stubs in the main.c function and the interrupts are turned off.

The NOP instruction at address 14 is an empty spot to hold the checksum. Page 179 of the
Philips LPC2106 manual states:

The reserved ARM interrupt vector location (0x0000 0014) should contain the 2's
complement of the check-sum of the remaining interrupt vectors. This causes the
checksum of all of the vectors together to be 0.

Before you fall on your sword, you'll be happy to know that the Philips Flash Loader will
calculate that checksum and insert it for you. That's why we show it as a NOP.
This part of the crt.s file sets up the various interrupt modes and stacks.

£ Resource - crt.s - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

Jrﬁ'[lﬁi] |I;1#J%'J/9njﬂj<::"-' | [PoResource
5. Navigator £2 =8 m main.dmp | demoz106_blink_flash.cmd | @ crk.s | =08
£ | = <=.=4> - A

125 demoz106_blink_flash # Reset Handler

|Z| .cdtproject
.project Reset Handler:

= crt.lst
..... E crto /% Setup a stack for each mode - note that this only sets up a usshle stack

----- @ crk.s for User mode. blzo each wode is setup with interrupts initially disabled. */
demoz106_blink_flash.crmd

----- [€) Ipc210x.h ldr r0, = stack end

""" [€] main.c mar CPSR_c, #MODE UND|I_EIT|F_BIT /% Undefined Instruction Mode */

----- |Z| main.dmp mow sp, r0

-+ [El main.hex sub 0, r0, #UND STACK SIZE

main.map wsr CPSR ¢, #MODE AET|I BIT|F _BIT /% Mhort Mode *f
main.o wov sp, r0

% maLl;'SlUt sub rd, r0, #AET STACKE IIZE

..... rakefile " -

Elk?c demoz106 blink ram msr CP3R_o, #HODE_FIQ| I_EIT|F_EIT f% FIQ Mode */
=| .cdtproject Mo sp, r0

sub r0, r0, #FIQ STACK SIZE

ot lst msr CPSR_c, #MODE_IRQ|I_BIT|F_EIT /% IRQ Mode */
g ate MoV sp, r0
..... B ots sub r0, r0, #IRQ STACK SIZE L
dernnz 106 _blink_ram,crnd msr CP3R_o, #HODE_SVCl I_EIT|F_EIT /% Supervisor Mode */
..... [€ Ipc210x.h mov Zp, b
----- @ main,c sub rd, ro, #SVC_STJ\.CK_SIZE
""" =] main. dmp msr CPSR_c, #MODE_SYS|I_BIT|F_BIT /% User Mode #/
- rnain. hes: | o ap, ri
main. map v
rmain. o r | 3 -
----- = main.out
..... [makefile Tasks | B Console 2 g8 I:—?il| #fE-r5-70

C-Build [demoz106_blink_Flash]

The label Reset_Handler is the beginning of the code. Recall that the first interrupt vector
at address 0x000000 loads the PC with the contents of the address Reset_Addr, which
contains the address of the startup code at the label Reset_Handler. This trick, used in the
entire vector table, loads a 32-bit constant into the PC and thus can jump to any address in
memory space.

_vectors: Idr PC, Reset_Addr

Reset_Addr: ..word Reset_Handler

Whenever the LPC2106 is reset, the instruction at 0x000000 is executed first; it jumps to
Reset_Handler. From that point, we are off and running!

The first part of the startup code above sets up the stacks and the mode bits.

The symbol _stack_end will be defined in the linker command script file demo2106.cmd.
Here is how it will be defined. Knowing that the Philips ISP Flash Loader will use the very
top 288 bytes of RAM for its internal stack and variables, we’ll start our application stacks at
0x4000FEEDO.

(Note: 0x40010000 — 0x120 = 0x4000FEEO)

/* define a global symbol _stack_end, placed at the very end of RAM (minus 4 bytes) */
stack_end = 0x4000FEEOQ - 4;

Working that out with the Windows calculator, the _stack _end is placed at 4000FEDC.

The code snippet that sets up the stacks and modes is a bit complex, so let’'s explain it a
bit.

First we load RO with the address of the end of the stack, as described above.

Idr r0O, =_stack_end

Now we put the ARM into Undefined Instruction mode by setting the MODE_UND bit in the
Current Program Status Register (CPSR). The four modes undefined, irq, abort and svc all
have their own private copies of R13 (sp) and r14 (link return). The FIQ mode has private
copies of registers R8 — R14. Thus, by writing RO into the stack pointer sp (R13), it will use
0x4000FEDC as the initial stack pointer if we ever have processing of an undefined
instruction. By subtracting the undefined stack size (4 bytes) from RO, we’re limiting the
stack for UND mode to just 4 bytes.

msr CPSR_c, #MODE_UND|I_BIT|F_BIT /* This puts the CPU in undefined mode */
mov sp, r0 /* stack pointer for UND mode is 0x40000FEDC */
sub r0, r0, #UND_STACK_SIZE /* Register RO is now 0x4000FEDS8 */

Now we put the ARM into Abort mode by setting the MODE_ABT bit in the CPSR. As
mentioned above, abort mode has its own private copies of R13 and R14. We now set the
abort mode stack pointer to 0Ox4000FED8. Again by subtracting the abort stack size from
RO, we're limiting the stack for ABT mode to just 4 bytes.

msr CPSR_c, #MODE_ABT||_BIT|F_BIT /* this puts CPU in Abort mode */
mov sp, r0 /* stack pointer for ABT mode is 0x4000FED8 */
sub r0, r0, #ABT_STACK_SIZE /* Register RO is now 0x4000FED4 */

Now we put the ARM into FIQ (fast interrupt) mode by setting the MODE_FIQ bit in the
CPSR. As mentioned above, FIQ mode has its own private copies of R14 through R8. We
now set the abort mode stack pointer to 0x4000FED4. Again by subtracting the abort stack
size from RO, we’re limiting the stack for FIQ mode to just 4 bytes. We’'re not planning to
support FIQ interrupts in this example.

msr CPSR_c, #MODE_FIQ|I_BIT|F_BIT /* this puts CPU in FIQ mode */
mov sp, r0 /* stack pointer for FIQ mode is 0x4000FED4
sub r0, r0, #FIQ_STACK_SIZE /* Register RO is now 0x4000FEDQ */

Now we put the ARM into IRQ (normal interrupt) mode by setting the MODE_IRQ bit in the
CPSR. As mentioned above, IRQ mode has its own private copies of R13 and R14. We
now set the IRQ mode stack pointer to 0Ox4000FDEO. Again by subtracting the IRQ stack

size from RO, we’re limiting the stack for IRQ mode to just 4 bytes. We’re not planning to
support IRQ interrupts in this example.

msr CPSR_c, #MODE_IRQ]|I_BIT|F_BIT /* this puts the CPU in IRQ mode */
mov sp, r0 /* stack pointer for IRQ mode is Ox4000FEDO */
sub r0, r0, #IRQ_STACK_SIZE /* RO is now 0x4000FECC */

Now we put the ARM into SVC (Supervisor) mode by setting the MODE_SVC bit in the
CPSR. As mentioned above, SVC mode has its own private copies of R13 and R14. We
now set the supervisor mode stack pointer to 0Ox4000FDDC. Again by subtracting the SVC
stack size(4 bytes) from RO, we're sizing the stack for SVC mode to 4 bytes.

msr CPSR_c, #MODE_SVC]|I_BIT|F_BIT /* This puts the CPU in SVC mode */
mov sp, r0 [* stack pointer for SVC mode is 0x4000FECC */
sub r0, r0, #SVC_STACK_SIZE /* RO is now 0x4000FECS8 */

The ARM “User” mode and the ARM “System” mode share the same registers and stack.
For this very simple example, we’ll run the application in “User” mode. Setting up the stack
for User mode also sets up the stack for System mode.

Now we put the ARM into USR (user) mode by setting the MODE_USR bit in the CPSR.
We now set the USR mode stack pointer to 0x4000FECS.

msr CPSR_c, #MODE_USR|I_BIT|F_BIT /* User Mode */
mov sp, r0

To summarize the above operations, let's draw a diagram of the stacks we just created.

RAM

RAM STACK USAGE

Philips ISP Flash Loader
Stack and variables

(288. bytes)

Undefined mode stack (4 bytes)
Abort mode stack (4 bytes)
FIQ mode stack (4 bytes)
IRQ mode stack (4 bytes)
SVC mode (4 bytes)

USR mode / SYS mode stack

Stack grows downward

(until it collides with

0x40010000
0x4000FFFF

0x4000FEEO
0x4000FEDC

0x4000FED8

0x4000FEDA4

0x4000FEDO

0x4000FECC

0x4000FEC8

last address in internal

bottom of Philips ISP
UND stack pointer

ABT stack pointer

FIQ stack pointer

IRQ stack pointer

SVC stack pointer

USR / SYS stack

The next part of the startup file crt.s to investigate is the setup of the .data and .bss
sections, as shown below.

£ Resource - crt.s - Eclipse Platform

File Edit Mavigaste Search Project Run Wwindow Help
Ci-H B -]+ v B | RyResource
- Mavigator = main.dmp 2oz 106_blink_Flash.cr ks =
5. Navigator £ = ir. [l demo2106_blink_flash.cmd | [S] ert =
=R 2 1 e
=% demnz2106_blirk_Flash /% copy .data section (Copy from ROM to REM) #/
2| .cdrproject 1ldr Rl, =_erext
2 project 1ldr Rz, =_data
B ortst 1dr B3, = edats
|E| crt.o 1: cmp Rz, E3
[8] crt.s ldrla RO, [R1], #4
3] demoz106_blink_flash.cmd strlo RO, [RZ], #4
[€] Ipe210x.h blo o
[main.c
El main.dmp /% Clear .bss section (Zero init) w/
&l mainhex o RO, #0O
‘_;‘ ma!n‘map 1dr Rl, =_bss_start
£ mane 1ldr Rz, = bas_end
|=] main,out 9: Rl RZ bl
B makefile) crp 4
= tgdemozlﬂs_bhnk_ram strla RO, [R1], #4
Z .cdtproject blo Zh
=l project
B orblst /% Enter the C code #/
El et b main
@ crk.s
dernaZ 106_blink_ram. cmd . endfunc
@ lpc210:.h .end |
[€] rnain.c b
[E main,.dmp < | 5
=] main.hesx = =
[E) main.map Tasks | B Console 52 ERE N 09-70
=] main.o C-Build [demoZ2106_blink_flash]
|=| main,out
|8 makefile

The .data section contains all the initialized static and global variables. The GNU linker will
create a exact copy of the variables in flash with the correct initial values loaded. The onus
is on the programmer to copy this initialized flash copy of the data to RAM.

The location of the start of the .data section in flash is defined by symbol _etext (defined in
the linker command script demo2106.cmd). Likewise, the location of the start and end of
the .data section in destination RAM is given by the symbols _data and _edata. Both of
these symbols are defined in the linker command script.

The .bss section contains all the uninitialized static and global variables. All we have to do
here is clear this area. Likewise, the location of the start and end of the .bss section in
destination RAM is given by the symbols bss_start and _bss_end. Both of these symbols
are defined in the linker command script.

Two simple assembly language loops load the .data section in RAM with the initializers in
flash and clear out the .bss section in RAM.

The GNU linker specifies two addresses for sections, the Virtual Memory Address (VMA)
and the Load memory Address (LMA). The VMA is the final destination for the section; for
the .data section, this is the RAM address where it will reside. The LMA is where it will be
loaded in Flash memory, the exact copy with the initial values. The GNU Linker will sort this
out for us.

14 Description of the Main Program main.c
Now let’s look at the main program.

The main program starts out with a few function prototypes. Note that the interrupt routines
mentioned in the crt.s assembler program reside in the main() program. We’ve used the
GNU C compiler syntax that identifies the interrupt routines and makes sure that the
compiler will save and restore registers, etc. whenever the interrupt is asserted.

I've also included a few do-nothing variables, both initialized and uninitialized, to illustrate
that the compiler will put the initialized variables into the .data section and the uninitialized
ones into the .bss section.

& Resource - main.c - Eclipse Platform |Z”EHZ|

File Edt Mavigate Search Project Run ‘Window Help

= =) =N 2l
JrJ' @lMJ%'JEQJﬂj@' 'J‘é’ﬂ B [{5Rresource
TS Navigator £2 = 8| [s] *art.s | main.dmp ‘ demoz106_blink_flash. cmd | [8) arts m =0
Yy | = <:===> — TR L e] A
E--b_—B demno2106. blink_Flash Function declarations

= o R L L Ay

=] .cdtproject
= .project

2] erkdst roid Initialize (void):

- [E] et roid feedivoid): =
[8] ert.s

-{®] demo2108_blink_flash.cmd roid IRQ Routine (void) __attribute_ ({interrcupt ("IRQ"))):

- [€] Ipc2imeh void FIQ Foutine (void) _ attribute_ (iinterrupt ("FIQ"))]:

- [8] main.c void SWI_Routine (woid) __attribute_ ({incerrupt ("SWIT)));

- =] main.dmp void TNDEF_Routine {void) _ attribute_ ({interrupt ("UNDEF")});
=] mainhes

&l man.o Header Ifiles

+ E] main.out R R R R R ey

- makefile
@ #include "LPCZ10x.h"

E1-E5 demo2106_blink_ram
-|E| .cdtproject

== project
B atlst R L L R R e T
- [E] et Glohal Varishles
@ ot R AR R R R R R R R R R A AT AR R R AR R R R R R AR AR DS
-{&] demo2108_blink_ram.cmd int o: /¢ global uninitialized varisble
- [€] lpczimeh int r: /¢ global uninitialized varisble
- [€] main.c int EH /4 global uninitialized variable
- || main.dmp
=] main.hezx short b = 2: // global initialized variable
- |5 main.map short i=3; /¢ global initialized wariable
5] main.o char 3 = 6 /4 global initialized variable
- =] main,ouk
- [&] makefile 3
< | >
Tasks | B console 52 Q[,:'“‘f_,favr‘jv:'ﬁ

C-Build [demoz106_blink_flash]

(| Writable Smart Insert 1426

3.3V
We're going to try to toggle a single Q
/0 bit, specifically P0.7 which is the LED-J2
Olimex red LED. By the way, with]
this hardware arrangement:
U1
R12
P0.7 =1 //turn off LED gg— RTCK PB. 8/TX0DB/PLMI % [2390
PO.7=0 //turn on LED < DBGSEL P@.1/RX0DA/PHM3 g Poz
-1 ReT PO. 2/SCL/CAPR.O [— o
3T PG.3/SDA/MATR.8 =2 ——po
PO, 4/5CK/CAPD,1 |Ea————
i Pe. 5/MISQ/NATS. 1 gi—;’g'z y Y LED
20| NC1 P@. 6/MOS1/CAP@. 2 W
55 ez PR, 7/SSEL/PHIN2 =S5 —50=
€21 NC3 PB.8/TXDI/PUMS E=2———— 5 4,

The Philips LPC2106 has 32 1/O pins, labeled P0.0 through P0.31. Most of these pins have
two or three possible uses. For example, pin P0O.7 has three possible uses; digital /0 port,
SPI Slave Select and PWM output 2. Normally, you select which function to use with the
Pin Connect Block. The Pin Connect Block is composed of two 32-bit registers, PINSELO
and PINSEL1. Each Pin Select register has two bits for each 1/O pin, allowing at least three
functions for each pin to be specified.

For example, pin P0.7 is controlled by PINSELDO, bits 14 — 15. The following specification
would select PWM2 output.

PINSELO = 0x00008000; // set PINSELO bits 14 — 15 to 01

Fortunately, the Pin Connect Block resets to zero, meaning that all port pins are General-
Purpose I/0 bits. So we don’t have to bother with the Pin Select registers in this example.

We do have to set the I/O Direction for port P0.7, this can be done in this way.

IODIR |= 0x00000080; /I set 10 Direction register, P0.7 as output
/' 1 =output, 0=input

The ARM I/O ports are manipulated by register IOSET and register IOCLR. You never
directly write to the 1/0O Port! You set a bit in the IOSET register to set the port bit and you
set a bit in the IOCLR register to clear the port bit. This little nuance will trip up novice and
experienced programmers alike. Alert readers will ask; “What if both bits are set in IOSET
and IOCLR?” The answer is “Last one wins.” The last IOSET or IOCLR instruction will
prevail.

Why did ARM design the port bits this way? This scheme allows you to modify a bit without
perturbing the others!

To turn the LED PO.7 off, we can write:
IOSET = 0x00000080; // turn PO.7 (red LED) off
Likewise, to turn the LED PO.7 on, we can write:
IOCLR = 0x00000080; // turn PO.7 (red LED) on
As you can see, it’s fairly simple to manipulate 1/0O bits on the ARM processor.

To blink the LED, a simple FOREVER loop will do the job. | selected the loop counter
values to get a one half second blink on — off time.

/l endless loop to toggle the red LED PO0.7

while (1) {
for (j = 0; j <500000; j++); / wait 500 msec
IOSET = 0x00000080; /I red led off
for (j = 0; j <500000; j++); // wait 500 msec
IOCLR = 0x00000080; /I red led on

}

This scheme is very inefficient in that it hog-ties the CPU while the wait loops are counting up.

The Initialize(); function requires some explanation.

C++ - main.c - Eclipse Platform

File Edit Mavigate Search Project Run window Help
L : T 2 —
rt-Heglb|@-a8-F-@-|%-0-@- &+ RERCRSCERAIN ' & | Bgoic+ =2
ﬁ;CJ‘C++ Pralis '=' 0| € lpez10x.h | [Sats ‘ 2] mair map | =] demoz106,cmd m rmain.|st ‘ [ertulst ‘ ol __»1 =im|
A
Initialize . .____,__i_'
IEAR-1R
Bdefine PLOCK Bx488 (o]

void Initialize{woid> <

[+ *}S main.out - [armle]

main, hex
main,|st

s Setting the Phased Lock Loop (PLL) L
@ crt.o - [armle] 4
i L Feed
() main.o - [armle] 77 0limex LPC-P2186 has a 14.7456 mhz crystal

v

crk st #7/ We'd like the LPC2186 to run at 53.2368 mhz Chas to be an even multiple of crystall> main
FFd

demazllia Eric #7 fccording to the Philips LPCZ186 manual: M = cclk ~ Fosc uhere: M PLL nultiplier Chits B-4 of PLLGRG)

Feed
Initialize

Initialize

esoRRkCE
=
m
n
=

53236880 hz

cclk g
= 14745608 hz

Fosc

|Z main.map

53236888 ~ 147456688 =
[makefile

4 (round upd

Solving: M 3.61683515625
M

Mote: M — 1 must be entered into hits 8-4 of PLLCFG <assign 3 to| these hits)

The Current Controlled Oscilator (CCO> must operate in the range 156 mhz to 328 nhz

fAccording to the Philips LPC2186 manual: Fecco = cclk = 2 = P wvhere: Fcco = CCO freguency
pelk = 532368808 hz

= PLL divisor <hits 5-6 of PLLCFG>

= 53236808 = 2 = P
trial valued
53236800 = 2 = 2
212947208 h=

Solving: Fecco
P=2

Feco
FccB

{good choice for P zince it’'s within the 156 mhz to 328 mhz range

From Table 19 <{page 48> of Philips LPC2186 manual P = 2, PLLCFG hits 5-6 = 1

PLLCFG = 8 61 866811 = 8223

{assign 1 to these bits>»
Finally:

Final note: to load PLLCFG wvegister,. we must use the BxAA followed Bx55 weite sequence to the PLLFEED register
this is done in the short function feed(> below

#/ Betting Multiplier and Divider values
PLLCFG=8x23;
feed();

Enahling the PLL =~
PLLCON=8x1 ;
feed{d;

Wait for the PLL to lock to set frequency
while(t(PLLSTAT & PLOCK))> ;

#7 Gonnect the PLL as the clock source
PLLCON=Bx3;
feed<{>;

Enabhling MAM and setting number of clocks used for Flach memory fetch (4 celks in this cased
MAMCR=Mx2 ;
MAMTIM=0x4;

/7 8Betting peripheral Clock (pclk} to System Clock <cclk)
UPBDIV=Bx1;

> |

T
%|EB L |t B -0

_ Properties }Search!

|Pratlems | B Console 5

Wiritable

Smart Insert: | an; 16 |

We have to set up the Phased Lock Loop (PLL) and that takes some math.

Olimex LPC-P2106 board has a 14.7456 Mhz crystal
We'd like the LPC2106 to run at 53.2368 Mhz (has to be an even multiple of crystal, in this case 3x)

According to the Philips LPC2106 manual: M =cclk / Fosc where: M

PLLCFG)

= PLL multiplier (bits 0-4 of

cclk =53236800 hz
Fosc = 14745600 hz

Solving: M = 53236800 / 14745600 = 3.6103515625
M =4 (round up)

Note: M - 1 must be entered into bits 0-4 of PLLCFG (assign 3 to these bits)
The Current Controlled Oscillator (CCO) must operate in the range 156 Mhz to 320 Mhz

According to the Philips LPC2106 manual: Fcco=cclk*2*P where: Fcco = CCO frequency
cclk =53236800 hz
P = PLL divisor (bits 5-6 of PLLCFG)

Solving: Fcco =53236800*2 * P
P =2 (trial value)
Fcco = 53236800 * 2 * 2
Fcc0 =212947200 hz (good choice for P since it's within the 156 mhz to 320 mhz range

From Table 19 (page 48) of Philips LPC2106 manual P =2, PLLCFG bits 5-6 =1 (assign 1to these bits)

Finally: PLLCFG =0 01 00011 = 0x23

Final note: to load PLLCFG register, we must use the OxAA followed 0x55 write sequence to the
PLLFEED register
this is done in the short function feed() below

With the math completed, we can set the Phase Locked Loop Configuration Register
(PLLCFG)

// Setting Multiplier and Divider values
PLLCFG = 0x23;
feed();

To set values into the PLLCON and PLLCFG registers, you have to write a two-
byte sequence to the PLLFEED register:

PLLFEED = OxAA;
PLLFEED = 0x55;

This sequence is coded in a short function feed();
The net effect of the above setup is to run the ARM CPU at 53.2 Mhz.

Next we fully enable the Memory Accelerator module and set the Flash memory to
run at ¥4 the clock speed. Now you see why some people prefer to execute out of
RAM where it's much faster.

/I Enabling MAM and setting number of clocks used for Flash memory fetch
I/l (4 cclks in this case)

MAMCR=0x2;

MAMTIM=0x4;

The clock speed of the peripherals is also run at 53.2 Mhz which is the full clock speed.

Il Setting peripheral Clock (pclk) to System Clock (cclk)
VPBDIV=0x1,

In the final snippet of the main() code, you can see the dummy interrupt service
routines. They are just simple endless loops; we don't intent to allow interrupts in

this simple example.

Resource - main.c - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
I-Falm|la-18s [eec-<-|B ¥ & | [resource
T Mavigator 52 =0 @ *crt.s | main.dmp | demaz106_blink_flash.cmd | @ crt.s m =0
5@l | <.====> hd la]
2% demo2106_bink_flash void feed(void)
- |Z| .cdtproject i
project PLLFEED=0xAk;
crk.Ist PLLFEED=0x55;
- ort.o i
@ crt.s
-{F] demaz106_blink_flash. cmd
—[€] lpc210x.h
@ main. c
main.dmp
main,hex
main. map /% Ftubs for various interrupts (way be replaced later) w
main.o & +
A i/ i/
- rnain. aut
|8 makefile . X -
S dema106_blnk_ram roid Il_%QiRout,lne [void) {
i while (1) :
= .cdtproject
project ¥
k. lsk
.. ot void FIQ Routine (weoid) |
- [8] ots while (1) :
demo2106_blink_ram,crmd i
[Ipc21ox.h
@ main.c
-~ |Z] main.dmp roid SWI_Routine (void) i{
main. hex while (1) :
main.map 3
main.o =
main, out
{8 makefile void UNDEF Routine (void] {
while (1) :
¥
L]
< i | b3
Tasks | B Console 52 =08
C-Build [demaoz 106_blink_flash]
I witable smart Insert 134 1 16

15

Let's look now at the linker command script, demo02106_blink_flash.cmd. I've included

extensive annotation to make it very clear how the memory is organized.

Resource - demo?

Description of the Linker Script demo2106 blink_flash.cmd

File Edt Mavigate Search Project Run Window Help
IF-Helb |- & ee-=- B | Roresource
5 MNavigator 23 = B8 wts 5 ats [21 main.c | Tain.map | derno2106_blink_ram.crd =0
= | =l 4:5 = R e A A L L A T
Elk—_[; demo2106_blink_flash I demozl06 blink flash.cmd LINEER SCRIPT w7
- /T wf
- .cdtproject
Jproject i i =)
crt.lsk A The Linker Script defines how the code and data emitted by the GNU C compiler and assexbler are =
crho I to bhe losded into memory (code goes into FLASH, warisbles go into RAM) . L
[8 erts I w
2 dermoZz106_blink_flash.cnd i Any symbols defined in the Linker Script are automatically global and available to the rest of the *7
@ lpc210x.h s prOgram. w
@ main.c i =i
raain, dmp A To force the linker to use this LINKER 3CRIFPT, just add the -T demoZl06 _blink flash.cmd directive wf
i, hiex I to the linker flags in the makefile. =
main. map i w7
ma?n.n i LFLAGS = -Map main.wmap -nostartfiles -T demoZl06 blink flash.cmd wf
|5 main, ouk i - - Y
[makefile i wy
(=5 demo2106_blink_ram
I The Philips hoot loader supports the ISP (In System Programming) via the Seriasl port and the IAP L
Al (In Application Programming) for flash programming from within your application. wf
I =/
I The boot loader uses RAM memory and we MUST NOT load warisbles or code in these areas. L
I w
A RAM used by boot loader: Ox40000120 - Ox400001FF (223 hytes) for ISP wvariabhles *7
I 0x4000FFEOQ — Ox4000FFFF (32 bytes) for ISP and IAP wariables =
I 0x4000FEEQ - Ox4000FFDF (256 bytes) stack for ISP and IAP =
I i
i* ¥
< | ¥
Tasks | B console 52 &' 9'—E|L’E'f‘j'='5
<kerminated = Insight [Program] C:\Program FilesiGHUARMYbIN arm-elf-insight. exe
[Wititable Insett 1991 |

Resource - demo?

blink_flash.cmd - Eclipse Platform

File Edt Mavigate Search Project Run Window Help
Jrﬁ'@@|lﬁﬁJ(¥'J91J¥b@' = B [Resourcs
TS MNavigator 52 =08 @ crt.s @ crt.s | @ main.c | main.map | demoz106_blink_ram.cod =g
4 | g - I A
1% demo2106_blink_flash i HEMORY MAP =
[cdtproject i | | Ox40010000 wf
.project i k| | i
crtlst A . | | 0x4000FFFF ®/
= ot A ram_lsp_hlgh | wariliables and stack | wF
@ crts Al | for Philips boot loader | w7
] demoz106_blink_Flash.cmd I | 288 bytes | 0x4000FEED =
[Ipc210x.h A > | i
~[g] main.c Iad | UDF Stack 4 bynes | 0%4000FEDC s
rnain, dmp i w1 | =
ma?“-hex Fa | AET Stack 4 bytes | 0x4000FEDS xS/
main,map i . | Y
main.o A | FIQ Stack 4 bytes | 0x4000FED4 w/
= B dermo2106_blink_ram I | IRQ Stack 4 bytes | 0x4000FEDOD LY
I B | w
I | SWC Stack 4 bytes | 0x4000FECT *F
I >| | wF
i | | 0x4000FECE €—————————— _stack end w5
A | stack area for user program | wf
I | | 1y
I | | w7
I | | wf
I | | =/
I | | w
A | | =
I | | i
I | free ram | w7
A ram | | *
I | | wf
I | | =/
A R Y | Cm—————— _hss end L
< | >
Tasks | B Console 52 &||:_:-,‘.5ﬂ|=,_,fa-rj-='ﬁ
<kerminated = Insight [Program] C:\Pragram Files\GHUARMYbIN arm-elf-insight. exe

Wititable Insert

199:1 |

Resource - demo2106_blink_flash.cmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

Jrﬁ'E‘E‘]@.|EﬁJ%'J»‘9ﬂJﬂ3@‘-' [| [[5Resource

T Mavigator &2 = O [8) ats 8 art.s | [€] main.c | main. map ‘ demao2106_blink_ram.cmd =0
= | B <_E|> - Iad . | et et e e e e e | B _hss_end LI
=2 dema2106_birk_flash o . ! ! i
2| cdtproject I | haa uninitialized variables | */f
project i . | e e e | Lmmm _hss_start Ly
crblst I | | Lmmmm _edata *
E ato /* | | */
[8] art.s i | | *
demoz106_blink_flash.crd /= | .data initialized wariahles | wf
/e | | */
I | | *f
min. drmp I . | | 0x40000200 <-— wf
main, hes L . > | *7
main. map /* . | variables used by | Dx400001FF |2
ma!n.n I ram isp low | Philips boot loader | *f
] main.odt I T | 223 bytes | 0%40000120 #/
9 meefie i . > | o
[#-1= demoz106_blink_ram i . | | 0%4000011F -
I ram vectors | free ram | wf
I | | 0x40000040 wf
I | | 0x4000003F */f
I | Interrupt Vectors (re-mapped] | *f
I . | 64 hytes | Ox 40000000 wf
/e . = | */
I | | *
i =/
I */
I *
i | | *
I B | *
/* | | Ox0001FFFF *
I | | *f
i | | T
I | | e
< [} | s
Tasks | B console 52 Eﬁ‘ = E-r-=0
<terminated > Insight [Program] C:'Program Files\GHUARMIbind arm-glF-insight . exe

I Writable Inserk 1991 ‘

Resource - demo2106_blink_flash.cmd - Eclipse Platform
File Edit

Mavigate Search Project Run Window Help

Is-H&l @ |- & |eoe-o-

T Mavigator &2 = O [8) ats 8 art.s | [€] main.c | main. map ‘ demao2106_blink_ram.cmd =0
| BE - i I I WA
=2 dema2106_birk_flash o ! ! i
2| cdtproject I | unused flash eprom | */f
Jproject ’* . | | *
ek st I . Lo e e e s | w/
E ato /* | | */
[8] art.s i | | *
demnz106_blink_Flash, crd I | | n/
/i . | copy of .data area | wf
I flash | | */f
main,dmp L] | | L
main.Figs: Al | | 0x00000284 <—-—======—m ETEXT "
main,map i | | i
main.o I | Main() | L5
ma'n'o_ut I | Feedi] flash | wf
) malefie i | Initialize() I ny
C "
1= demnz106_blink_ram
= blink._t I | | 0x00000104 *
I | | =
I | | 0x00000103 wf
I | Startup Code|assembler) flash | *
i | | *
I | | 0x00000040 wf
/e | | */
I | | 0x0000003F */f
I | Interrupt Vector Table flash | wf
I | 64 hytes | */
I . = | 0x00000000 *
i *
I *
I The easy way to prevent the linker frow loading anvything into a memory area is to define *7
I a MEMORY region for it and then avoid assigning any .text, .data or .h3s sections into it. *f
i =/
I v
< [} | ¥
Tasks | B console 52 Eﬁ‘ # B0
<terminated > Insight [Program] C:'Program Files\GHUARMIbind arm-glF-insight . exe

I Writable Inserk 1991 ‘

The first order of business in the linker command script is to identify the memory
available, this is easy in a Philips LPC2106 — the RAM and FLASH memory are on-
chip and at fixed locations. Page 29 of the Philips LPC2106 User Manual shows
the physical memory layout.

4.0GB OxFFFF FFFF
AHB Peripherals
175GB 0xF000 0000
WPB Peripherals
15GR 0xE000 0000
1068k _| 0xC000 0000
Reserved for
External Memory
2068 0xE000 0000 On-chip static RAM is from
{re-mapped from COn-Chip Flash memory)
= - - 0x40000000 - 0x4000FFFF
N For the LPC2106
On-Chip Memary 04000 FFFF: LPC21086 (84 kB)
0x4000 7FFF: LPC2105 (32 kB)
- 0x4000 3FFF: LPC2104 (16 kB)
1068 On-Chip Static RAM 0x4000 0000
On-chip static FLASH is from
0x0002 0000 0x00000000 - 0x0001FFFF
128 kB On-Chip Non-Valatile Memory <

£ Resource - demo2106_blink_flash.cmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

M-HE Q- |+ e e- B | [PyResource
5. Navigator E3 =8 @ crt.s 06_blink_flash.cmd X @ crt.s @ main,c rmain.map demo2106_blink_ram,cmd =0
d | BE - A
S-S demo2106_blink_Flash £*% didentify the Entry Point */
= cdproject
=] .project ENTRY (_startup)
= ortlst
E| oto
[8] crts
[F1 demoz108_biink_flash, cnd /* specify the LPC2106 memory areas */
@ Ipc210z.h
€] main.c MENORY
l;l main.dmp ¢
- ma!”'hex flash : ORIGIN = 0O, LENGTH = 128K /* FLASH ROM wf
— man.map ram_isp_low(d) : CRIGIN = 0x#0000120, LENGTH = 223 /% variables used by Philips ISP bootloader */
=R ram : ORIGIN = 0x40000200, LENGTH = 64992 /% free RAM arsa 5
ﬁmakelfi\e ram isp_high(k) : ORIGIN = Ox4000FFEQ, LENGTH = 32 /% variahles used by Philips ISP hootloader #/
[+ bc demoz106_blink_ram ¥
/% define a global sywbol _stack end #/
_stack end = Ox4000FEDC;
A
< | >
Tasks | B Conscle 52 8* BBl #B-r-=0

<terminated:> Insight [Program] C:\Program Files\GNUARMYbin\arm-elf-insight . exe

Writable Insert 156 : 24

First we define an entry point; specifically _startup as defined in the assembler function
crt.s.

ENTRY(_startup)

The Linker command script uses the following directives to lay out the physical memory.

MEMORY

{
flash : ORIGIN = 0, LENGTH = 128K /* FLASH ROM */
ram_isp_low(A) : ORIGIN = 0x40000120, LENGTH = 223 [* variables used by Philips ISP */
ram : ORIGIN = 0x40000200, LENGTH = 64992 /* free RAM area *

ram_isp_high(A) : ORIGIN = 0x4000FFEO, LENGTH = 32 [* variables used by Philips ISP */
}

You might expect that we’'d define only a flash and a ram memory area. In addition
to those, we’ve added two dummy memory areas that will prevent the linker from
loading code or variables into the RAM areas used by the Philips ISP Flash Utility
(sometimes called a boot loader). See page 180 in the Philips LPC2106 User
Manual for a description of the Boot Loader's RAM usage.

As you'll see in a minute, we’ll be moving various sections (.text section, .data
section, etc.) into flash and ram.

Note that we created a global symbol (all symbols created in the linker command
script are global) called _stack_end. It's just located after the stack/variable area
used by the Philips ISP Flash Utility (boot loader) as mentioned above.

_stack_end = 0x4000FEDC;
Now that the memory areas have been defined, we can start putting things into
them. We do that by creating output sections and then putting bits and pieces of

our code and data into them.

We define below four output sections:

startup - this output section holds the code in the startup function, defined in crt.s
text - this output section holds all other executable code generated by the compiler
data - this output section contains all initialized data generated by the compiler

bss - this output section contains all uninitialized data generated by the compiler

The next part of the Linker Command Script defines the sections and where they go in
memory.

& Resource - demo2106_blink_flash.cmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
IH-EB& B Q- e £ | omesourcs
TS Mavigator £2 = O8] ats B *demoz106_blink_flash.crnd % | [€) main.c | main.map | demoz106_blink_ram.cmd =0
42 | = G:ﬁ - y
["
[l demoz106_blink flash /% now define the output sections */
SECTICNS
{
. = 0: /% set location counter to address zero 5/
demoz106_blink_flash.cmd
@ Ipc210x.h startup : { *i.startup)} >flash /* the startup code goes into FLASH */
@ main.c
= main.dmp
- |2 main.hex
5| main.map .text : /% collect all sections that should go into FLASH after startup %/
- |Z] main.o {
=] main,out *{.text) /¥ all .text sections (code) *7
@ makefile *{.rodata) /% all .rodata sections (constants, strings, ete.) #F
-5 demo2106_blink_ram #{.rodata®) /% all .rodata® sections (constcants, scrings, etc.) ®/
l.glue_7) / all .glue_7 sections */
*{.glue_7t) /% all .glue_7t sections */
_etext = .; /7 define a global symbol _etext just after the last code byte w5
3 #flash /% put all the above into FLASH */
.data /% collect all initialized .data sections that go into RAM %/
1
_data = .; /* create a global symbol marking the start of the .data section */
#{.data) /% all .data sections #/
_edata = .: /7 define a global symbol mwarking the end of the .data section #/
1 sram AT >flash /% put all the above into RAM (but load the LMA copy into FLASH) +/
.hes /% collect all uninitialized .bsSs sections that go into RAM +/
{
_hss_start = .; /% define a global symbol wmarking the start of the .bss section */
* (. hes) /% all .bss sections */
I rram /% puc all the above in RAM (it will be c¢leared in the scartup code +/
. = ALIGI(4): /* advance location counter to the next 32Z2-bit boundary */
_hss_end = . : /7 define a global symbol marking the end of the .bss section %/
i
_end = .} /* define a global symbol wmarking the end of application RAM */
v
< \ 3
Tasks | & Console &3 &IL’:‘:@"ML’EvF‘j'mE]
1
I Wwirikable Insett 138 16 |

The first thing done within the SECTIONS command is to set the location counter.

The dot means “right here” and this sets the location counter at the beginning to
0x000000.

.=0; /* set location counter to address zero */

Now we create our first output section, located at address 0x000000. This creates
a output section named “startup” and it includes all sections emitted by the
assembler and compiler named .startup. In this case, there is only one such
section created in crt.s.

This startup output section is to go into FLASH at address 0x000000. Remember
that the startup section has the interrupt vectors (must be placed at 0x000000) and
the startup code also sets the stacks, modes and copies the .data and .bss
sections.

startup : { *(.startup) } >flash

Now we can follow the vector table and assembler startup code with all code
generated by the assembler and C compiler; this code is normally emitted in .text
sections. However, constants and strings go into sections such as .rodata and
.glue_7 so these are included for completeness. These code bits all go into FLASH
memory.

text : /* collect all sections that should go into FLASH after startup */
{
(.text) [all .text sections (code) */
(.rodata) / all .rodata sections (constants, strings, etc.) */
(.rodata) [* all .rodata* sections (constants, strings, etc.) */
(.glue_7) / all .glue_7 sections */
(.glue_T7t) [all .glue_7t sections */
_etext = ; /* define a global symbol _etext after the last code byte */
} >flash /* put all the above into FLASH */

We follow the .text: output section (all the code and constants, etc) with a symbol
definition, which is automatically global in the GNU toolset. This basically sets the
next address after the last code byte to be the global symbol _etext (end-of-text).

There are two variable areas, .data and .bss. The initialized variables are
contained in the .data section, which will be placed in RAM memory. The big
secret here is that an exact copy of the .data section will be loaded into FLASH
right after the code section just defined. The onus is on the programmer to copy
this section to the correct address in FLASH,; in this way the variables are
“Initialized” at startup just after a reset.

The .bss section has no initializers. Therefore, the onus is on the programmer to
clear the entire .bss section in the startup routine.

Initialized variables are usually emitted by the assembler and C compiler as .data
sections.

.data :

{
_data=.; [/ global symbol locates the start of .data section in RAM
*(.data) / tells linker to collect all .data sections together
_edata=.; //global symbol locates the end of .data section in RAM

} >ram AT>flash //load data section into RAM, load copy of .data section
I/l into FLASH for copying during startup.

Note first that we created two global symbols, data and _edata, that locate the
beginning and end of the .data section in RAM. This helps us create a copy loop in
the crt.s assembler file to load the initial values into the .data section in RAM.

The command >ram specifies the Virtual Memory Address that the .data section is
to be placed into RAM (think of it as the final destination in RAM and all code
references to any variables will use the RAM address.

The command AT >flash specifies the load memory address; essentially an exact
copy of the RAM memory area with every variable initialized placed in flash for
copying at startup.

You might say “why not let the Philips boot loader load the initial values of the
.data section in RAM directly from the hex file?” The answer is that would work
once and only once. When you power off and reboot your embedded application,
the RAM values are lost.

The copy of the .data area loaded into flash for copying during startup is placed by
the GNU linker at the next available flash location. This is conveniently right after
the last byte of the .prog section containing all our executable code.

The .bss section is all variables that are not initialized. It is loaded into RAM and
we create two global symbols _bss_start and _bss_end to locate the beginning
and end for clearing by a loop in the startup code.

.bss:

{
_bss_start = ;
*(.bss)

} >ram

.= ALIGN(4);

_bss end =.;
_end =

Now let’s diagram just where everything is in RAM and FLASH memory.

0x40010000
_ 0x4000FEEO
0x4000FFFC
stacks

RAM Unused RAM

— . 0x40000234
.bss uninitialized variables

0x40000218

.data variables
0x40000200

_ 0x40000000

0x020000
Unused FLASH
copy of .data variables
0x000268
Constants, strings, etc.
FLASH Initialize()
Feed()
Main()
Startup Code
0x000020
Vector Table
0x000000

16 Description of the Makefile

The makefile is the last source file we need to look at. | built the makefile to comply
with the GNU make utility and be as simple as possible.

= Resource - makefile - Eclipse Platform

File Edit Mawigate Search Project Run ‘Window Help

JFZ’*.EMEJ%'J@"J“-CD'-'J ﬁﬁ\jp\esource
TS Mavigatar 52 =0 demoz 106_blink_flash. crd | main.map | @ crt.s | crk.lsk | rmain.dmp m
A | = <ﬁ==='> - NAHE = demoz2l106_blink flash

=% demo2106_blink_flash

[.cdtproject Lo = armw-elf-goo
2 .project LD = arm-elf-1ld -w
[crtlst AR = arm—elf-ar
- [F] ert AS = arm-elf-as
----- [8] crts CP = arm-elf-objcopy
demoz106_blink_flash.cmd [8]i] = armw—elf-objdump
----- [€] lpczioeh
""" @ rnain. CFLAGE = -I./ -o —fno-common -03 -g
- | 5| main.dmp AFLAGS = —ahls -mapcs-32 -0 crt.o
- E] main hex LFLAGE = -Map main.map -TdewoZl06 blink flash.cmd
- | main.map CPFLAGS = -0 ihex
El man.o ODFLLGS = -x --Syws
- | =] main,out
----- k) makefile
[]---‘[EB, demoz106_blink_ram all: rest
clean:

—ri crt,lst wain.lst crt.o wain.o main.out wain.hex wain.map wain. dmp

test: main.out
B echo "...copying"”
F{CP) §(CPFLAGS) main.out main.hex
§(0D) §(ODFLAGS) main.out > main.dmp

main.out: crt.o wain.o demoZl0f hlink flash.cmd
B echo ™..linking"
3{LD} $(LFLAG3) -0 main.out crt.o main.o

Crt.o: CEt.S
f echo "™.assembling"”
4 (48] $(AFLAGS) crt.s » crt.lst

mwain.o: wain.o
@ echo "™.compiling"™
§{CC) §(CFLAG3) main.c

& Tasks & 8 2w T 0O

0 items

PN I T | I [T, | PR |

[| ‘Writable | Smart Insert | 1:1 |

The general idea of the makefile is that a target (could be a file) is associated with
one or more dependent files. If any of the dependent files are newer than the
target, then the commands on the following lines are executed (to recompile, for
instance). Command lines are indented with a Tab character!

main.o: main.c
arm-elf-gcc -/ -c -O3 -g main.c

In the example above, if main.c is newer than the target main.o, the command or
commands on the next line or lines will be executed. The command arm-elf-gcc will
recompile the file main.c with several compilation options specified. If the target is

up-to-date, nothing is done. Make works its way downward in the makefile, if
you've deleted all object and output files, it will compile and link everything.

GNU make has a helpful “variables” feature that helps you reduce typing. If you define the
following variable:

CFLAGS = -l./ -c -fno-common -O3 -g
You can use this multiple times in the makefile by writing the variable name as follows:
$(CFLAGS) will substitute the string -I./ -c -O3 -g
Therefore, the command-
arm-elf-gcc $(CFLAGS) main.c
is exactly the same as

arm-elf-gcc -I./ -c -O3 -g main.c

Likewise, we can replace the compiler name arm-elf-gcc with a variable too.
CC = arm-elf-gcc
Now the command line becomes

$(CC) $(CFLAGS) main.c

Now our “rule” for handling the main.o and main.c files becomes:

main.o: main.c
}— @ echo ".compiling”
I——>$(CC) $(CFLAGS) main.c

Commands MUST be
indented with a TAB
character!

It's worth emphasizing that forgetting to insert the TAB character before the
commands is the most common rookie mistake in using the GNU Make system.

The compilation options being used are:

-1/ = specifies include directories to search first (project directory in this case)
-C = do not invoke the linker, we have a separate make rule for that
-fno-common = gets rid of a pesky warning

-03 = sets the optimization level (Note: set to —OO0 for debugging!)

- = generates debugging information

The assembler is used to assemble the file crt.s, as shown below:
crt.o: crt.s
@ echo ".assembling"”
$(AS) $(AFLAGS) crt.s > crt.lIst

In the example above, if the object file crt.o is older than the dependent assembler
source file crt.s, then the commands on the following lines are executed.

If we expand the make variables used, the lines would be:
crt.o: crt.s
@ echo ".assembling"”
arm-elf-as -ahls -mapcs-32 -0 crt.o crt.s > crt.st

The > crt.Ist directive creates a assembler list file.

The assembler options being used are:

-ahls = listing control, turns on high-level source, assembly and symbols
-mapcs-32 = selects 32-bit ARM function calling method
-0 crt.o = create an object output file named crt.o

The GNU linker is used to prepare the output from the assembler and C compiler for
loading into Flash and RAM, as shown below:

main.out: crt.o main.o demo2106_blink_flash.cmd
@ echo "..linking"
$(LD) $(LFLAGS) -0 main.out crt.0o main.o

If the target output file main.out is older than the two object files or the linker
command file, then the commands on the following lines are executed.

The Linker options being used are:

-Map main.map creates a map file

-T demo2106_blink flash.cmd identifies the name of the linker script file

Note that I've kept this GNU makefile as simple as possible. You can clearly see the
assembler, C compiler and linker steps. They are followed by the objcopy utility that
makes the hex file for the Philips ISP boot loader and an objdump operation to give
a nice file of all symbols, etc.

17 Compiling and Linking the Sample Application

OK, now it’s time to actually do something. First, let's “Clean” the project; this gets
rid of all object and list files, etc. Click on “Project — Clean ...” and fill out the Clean
dialog window.

&= Resource - main.c cclipse Platicrm
File Edit Mavigate Skarch WEfe=e Window Help

I8 -E & B | o B ¥ A 8 [Roremres

Close Project

T Mavigator &3 rnd [crt.s | [makefile (@ main.c &4 = E|| 5= outline 52 =08
IH_E#BL"ldn" Ctr|+B o oo a g
’ * | = Build Project F) — s z @ w @ -
=+ demaz106_blink_flash e unetinn declarsgdon

2 .cdtproject< - GEEEEEEEREEE
project Build Aut Fical
s Dl Automaticaly et

v| demoz106_blink_Fl Properties H
Ipc210x.h 9P Clean will discard all build problems and built skates. The next time a build

main.c void IRQ Routine {void) at - occurs the projects will be rebuilt From scratch.
void FIQ Routine (void)]

void SWI_Routine (void] _ atdl { Clean all projects ¥ Clean projects selected below
void UNDEF_Routine (void) _ at
C !
[¥11=: demoz106_blink_Flash
ll."**************************** - —

Header files = _Dlink_ram

FEEEE AT EAEE AT E AT RATATTAS T AT

#include "LPCZ10x.h"™

SRR AR A AR A A AE A AERARA AR AW 0]

Global Variay
o o o o o o o o o o o o o

int H A4 ogla
int r; /foglo
int ER /7 oglo
short h = 2; foglo
short i= 3; foglo
char j = &; /4 glo
[T start a build immediately
<

B Console X Problems Cik I Cancel |
_-Build [demoz 106_blink_flash
make -k clean

rm crt.lst wain.lst crt.o wain.o main.out main.hex main.mwap main. dmp

rm: cannot lstat “main.lst': No such file or directory
make: [clean] Error 1 (ignored)

You can see the results of the “Clean” operation in the Console window at the bottom.
Expect to see some warnings if there isn’t anything to delete.

To build the project, click on “Project — Build All”. Since we deleted all the object files and
the main.out file via the clean operation, this “Build-all” will assemble the crt.s startup file, C
compile the main.c function, run the linker and then run the objcopy utility to make a hex
file suitable for downloading with the Philips ISP Flash Utility.

£ Resource - main.c - Eclipse Platform

File Edit Mavigate Search QG Run Window Help

-l o= i 8 5 [Eoremaes

Zlose Project

— 4 =P b
BT Mavigator E2 d | [8] ot s | 8 makefile m = 0O/ 5= outine &2 =0
[t Buid A1 Chrl+E
I T m———

T T R TR AT AT AN AT AT AT AATEATATAATAT AN RTAATRATATAAT

- ‘ =) Build Project . & L@ e -
[=1-12% demo2106_blink_flash Build Warking Set Function declarationg = Initialize
H = - B T T
H |=| cdtproject Clean... feed
‘project Euild Automatically R IRQ_Routine
(8] s {void) ; B FI_Routine
--[F] demoz106_blink_Fl Properties : Sl _Routine
- [€] Ipc210x.h UNDEF_Routing
@ main.c roid IRQ Routine (void) __attribute_ ({interrupt ("IRQ"))): LPCZ210x.h
: @ makefile roid FIQ Foutine (void) __attribute_ ({interrupt("FIQ"))): q
5 demo2108 _blink_ram void SWI_Routine (veid) _ attribute_ {({interrupt("3WI"))); 4
void UNDEF_Routine (woid) _ attribute ({interrupt ("UNDEF™)]): ;
i

1
main

Header files
R e E T

PLOCK.
#include "LPCZ10x.h" Initislize
feed
@ IRQ_Routine
B R R T T T e e T T ® FIq Routine
Global Variasbles @ SWIRoutine
AR R G AR R A AR A B AT ARG AR AR AR AT A G R A B AT ARG ARG R A T AT A . ® UNDEF Routine
int oz // dlobal uninitialized wvariahle -
int r: /¢ global uninitialized variable
int ER /¢ wlobal uninitialized variable
short h = z: /4 global inicialized wariable
short i= 3; // global initialized wvariable
char i = 6; /¢ global initialized warishle B
< | y
&l Consale E2 . Problems 8 G | #E-r5-70

C-Build [demoz 106_blink_flash]
wake -k clean

¥rm crt.lst main.lst crt.o main.o main.out main.hex main.mwap wain. dmp
rm: cannot lstat “crt.lst': No such file or directory

rm: cannot lstat “main.lst': No such file or directory

rm: cannot lstat “crt.o': No such file or directory

rm: cannot lstat ‘main.o': Mo such file or directory

¥rm: cannot lstat ‘main.out': No such file or directory

rm: cannot lstat ‘mwain.hex': No such file or directory

rm: cannot lstat “main.map': No such file or directory

rm: cannot lstat “main.dmp': No such file or directory

make: [clean] Error 1 (ignored)

[Wrikable Smart Insert | 411

We can see the results in the Console Window at the bottom.

Problemns

(28 -3 -0

Z-Build [demoZ106_blink_FMash]

.assewmb ling

3

arm—elf-as —-ahls -mapcs-32 -0 ort.o ort.s > cort.lst

Loompiling

arm—-elf-goe -I.7 —o —fro—commwon —-03 —-g main.co

Llinking

arm—elf-1d -v -Map main.map -Tdemozl06 hlink flash.cwd -o wain.out crt.o mwain.o
GHNT 1ld wersion 2.15

.. .COobving

arm—elf-objcopy -0 ihex main.out main. hex

arm—elf-objdunp -x —--3vins mwain.out > mwain. dmp

<

18 Setting Up the Hardware

For this tutorial, we’ll be using the Olimex LPC-P2106 Prototype Board. Connect
a straight-through 9-pin serial cable from your computer's COM1 port to the DB-9
connector on the Olimex board. Attach the 9-volt power supply to the PWR
connector. Install the BSL jumper and the JTAG jumper.

You can use a
standard 9-pin PC
serial cable to
connect COM1 to the

Olimex board.

LPC2000 Flash Utilty V2.2.0 = CO M 1

DB-9
Serial Port

© - Eé@'s ® :’:w:aus
.83 sooo.:s!ﬁg — !{.__92

19 89 85

~ » m —

ci2 ciice HH s [z

N EEEN cs cE5" % _-ﬁl_-- 1 e

. o NuEn B s e
R

{(—)}ﬂ

Short the BSL Q) & L
jumper to download GOOC00000000C000000 0000 ?
SUIE [ETOEEIT [7f2 T ¥
flash. sifiizininoi] RESET Bution fo

EEEEEEEEEEEEEEEEEEEENEEEEEEEEN

Remove the BSL EEEEEEEEEEENEEEEEENENEEEEEEEER

jumper to execute 05 ot o o
EEEEEEEEESESEEEEEENENNENNEEENE
EEEEEEEEEEEEEEEEEEEENEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEENEEEEEEEEN
EEEEEEEE NN EEEEEEEEEEEEEEEEEE
EEEEEEEE NN NN NSNS EEEEEEEEEE
@ UituusscsEssssssEEnEEREn.

LPC-P2 106 HTTP: //UWW. OLIMEX. COM/DEV

"

.......

To run the Philips LPC2000 Flash Utility, it's easiest to just click on the “External Tools”
button and its down arrow to pull-down the available tools. Click on “LPC2000 Flash
Utility” to start the Philips Boot Loader.

Resource - demo2106_blink_flash.cmd - Eclipse Platform

File Edit Mawigate Search Project Run Window Help
Iri - &) -
i —
TS Mavigator Eﬂ\g b =E L fl=sh.cmd X
EII:[‘E' demaZz106_blink_f {% 3 Insight hilips hoot
_____ I_—_EI chtFlm]EEt _— , wpplication I
----- =] .project
..... 2| crt.lst @, External Tadls... oot loader 1
----- [E] crto Crganize Favorites, .,
----- 8] crt.s P FAM used by hoot
demoz 106_blink_Flash, crd i
----- [€] Ipcz10x.h FE
----- @ rain. i
----- |=| main.dmp FE
----- |=| main.hex IE
----- (=] main.map I
----- [=] main.a i .
----- (=] rmain,auk e
----- [makefile ,a _ hi
[+ 1% dema2106_blink_ram e tEi_1sp_Hit

The Philips LPC2000 ISP Flash Programming will start up.

i LPC2000 Flash Utility
File EBuffer Help

m LPC2000 Flash Utility V2.2.0

— Flazh Programming —Eraze / Blank — Communication
Filename: _ _ Connected To Port:
||::\eclipse'\wnrkspace'\demu21 0E_blink_flas ... | Blank Check &+ Entire Device COk1: -

" Selected Sectors

Evecute Code lze Baud Rate;

IJpload ta Flash ¥ I'IEIEDD VI
after Upload Start Sechor: I 0
Erase I_

Compare Flash I aral Reset | L || Endseelr 1 Time-Out [zec]: | 2

— Device Uze DTR/RTS
Device: I .,I I for Reset and
LPLZ104 Read PentlDe r Boat Loader

#TAL Freq. [kHz]: |14;-'45 Dievice I Boot Loader |D3I Selection

Now fill out the LPC2000 Flash Utility screen. Browse the workspace for the main.hex file.
Set the Device to LPC2106. Set the crystal frequency to 14746, as per the Olimex
schematic. The default baud rate, COM port and Time-out are OK as is.

E5 LPC2000 Flash Utility
File Buffer Help

m LPC2000 Flash Utility Vv2.2.0

— Flazh Pragramming — Eraze / Blank — Communication

— ; ;) Connected To Port:
|work$pace'\demo2‘l 0E_blink_Flashimain.bed .. Blark Check " Entire Device IEDM1: vI
S — " Selected Sectors

Uze Baud Rate:

£\

Execute Code
Upload ta Flazh [-
F = after Upload Start Sectar: I 0 19200
Eraze
Compare Flash [anual Heset | | e I I Timne-Out [sec] I 2

-~ Device Us= DTR/RTS
Devicgl - d far Reset and
LPC2108 Read Part 10 | [~ prhissstan
WTAL Freq [kHNL [1a725 Device ID Bootloaderif Selection

Now click on “Upload to Flash” to start the download.

The Philips ISP Flash Utility will now ask you to reset the target system. This is the tiny
RST button near the CPU chip.

LPC2000 Flash Utility - Reset Message X

Please reset your LPC2000 board now and then press !

The download will now proceed; you'll see a blue progress bar at the bottom and then the
status line will say “File Upload Successfully Completed”.

k: LPC2000 Flash Utility
File Buffer Help

m LPC2000 Flash Utility V2.2.0

r Flash Frogramming —Eraze / Blank r— Communication
Filerarne: Connected To Part:
|waorkspacedemn21 08_biink_flashimain hex .. | Blank Check {+" Entire Device ICDM1: vl
™ Selected Sectors
Execute Code -_— se Baud Rate:
i Upload to Flash ¢ o -
L ; e after Lplnad Start Sectar: I 0 13200
Eraze I_
Compare Flash tdanual Heset | e i Time-0ut [zec]: I 2
~ Device Jze DTRARTS
Device: - I for Reset and
[LPez10e I Read Pt T Boot Loader
HTAL Freq. [kHz]: |14?45 Device (D Boot Loader ID:I Selection
|]

File Upload Successfully Completed

Remove the BSL (boot strap loader) jumper and hit the RST button.

Remove the

BSL jumper —r 16 & 88 85
Ci12 Ciil C#
AR EE BN

il
Ot
=
]
&hn :
£13
aﬂ
Fl:- o
gy

1

—_ (1] l r

a8 ® 518 cie 3 = r
Bl

“88 azaz I o el

bk

E.. | =] - [B |
s OLIMEX LTD
"ma () COPYRIGHT(C) 28@3

Your application should start up and the LED will start blinking.

To prove that | am as honest as the sky is blue, here it is blinking away!

OK, I admit it; this photo has the reliability of a Bigfoot video!

19 Create a New Project to Run the Code in RAM

Now we will create a new project that will run the blinker code in RAM. Only minor
modifications to three files are required. We will show how to run the application
using the Philips ISP flash utility. Later, we’ll show how to use this very same RAM-
based application with the Eclipse/CDT debugger and a Wiggler JTAG interface.

Using the techniques previously discussed, create a new project named
demo2106 blink_ram.

& New Project

C/Make Project -

Create a Mew C Project using 'make’ to build it

Project mame: | demoz 106_blink_ran|

Project conkents
¥ Use default

Direckory; I Cieclipseworkspacedemoz 106_blink_ram Browse, ., |

< Back. | Mexk = | Finish I Cancel |

Switch to the C/C++ Perspective and you will see that there are now two projects, although
the new one contains no files.

£ CIC++ - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

[[lwif= o @ & @- | $-0-%- |®F |0 E-0 - T »
48 ‘ = <,====> - An outline is not available.
1% demoz 106_blink_flash
[#- 'E; demoz106_blink,_ram

Froblems | B Console 52 Properties #B2-ri-=0

A consale is not available,

|| Jdemoz108_blink_ram

Now using the “File Import” procedure described earlier, fetch the source files for the
project demo2106_flash_ram included in the zip distribution for this tutorial.

= Import
File system —
Import resources fram the local file syskem, D
-
From directary: IC:'l,source codeldemoz106_blink_ram LI Browse. .. |
------ [F] &= demoz106_blink_ram O 2 cdtproject
O 5 .project
O 2 crt.lst
O & ot.o
8 art.s

dem02106_b|ink_ram.cmd
€ lpezioeh

@ main.c

O = main.dmp

O & main.hex

O = main.map
O E main.o
O = main.out
@ makefile

Filter Types... | Select All Deselect all |

Into Folder: I demoz106_blink_ram Braowse. ., |

Options

[Overwrite existing resources without warning
" Create complete Folder structure

' Create selected Folders only

< Back, Mext = | Firish I Cancel

RAM,
The files we import are: crt.s
demo2106_blink_ram.cmd
Ipc210x.h
main.c
makefile.mak

Now if you “Clean and Build” you should see a completed project with all the resultant files,
as shown below.

C/C++ - demo2106_blink_ram.cmd - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

I-Hegl e & -a8-F-@-|3-0-Q-|®F | T2 - B | Bgcicr+ ?

6 Cic++p., 2 T O m.cmd X S Olggox > T 0O

A | E <1|='=D - l.."ﬂ' 1"1?1?*1"1?1?1?1?1?1"*ﬁtﬂ'1"*ttﬂ‘1?1"*1"1"1?1?*1"1?1?1?*1?1?*ﬁtﬂ'1"*ttﬂ‘1?*ﬁt**1*#**1*#**1***********7: AnDUtlinEiSnDta\"ailable.
.bb demaz106 blink flash i demo2l106_klink ram.ctd LINEER SCRIPT
E'bc demoz106_blink_ram i =
- € Binaies A
[]..r._ID Includes i The Linker Script defines how the code and data ewitted by the GNU C oc
[]...@ lpcz1.h i to he loaded into memory (code goes into FLASH, wariables go into RAM) .
- [8] s L
[]---@ main. c i Any svrbols defined in the Linker Script are sutomatically global and =
- [oo - [armle] /% program.
I:I--- main.o - [armle] i
[]"'ﬁ main. out - [armle] i To force the linker to use this LINEER 3CRIPT, just add the -T demo2lOf
i to the linker flags in the makefile.
l.."ﬂ'
i LFLAGE = -Map main.mwap -nostartfiles -T demo2l06 _blink ram
]
l.."ﬂ'

i The Philips koot loader supports the ISP (In Svystem Programoing) wvia tl

i [In Application Programming) for flash programming from within your app
l.."ﬂ‘
a3 Tha femt+r lasdsr noaes DIW wawortr and e MTTET MOT 1had srarvdishlas v ~ads X
< | >
Problems | B Console $2 . Properties % | ENA: | #BE-r5-=0

<terminated:> LPC2000 Flash Utility [Program] C:\Program Files\LPCZ106 ISPILPCZ10x_ISP.exe

[| Writable Insert 1:1

20 Differences in the RAM Version

File CRT.S

In the startup assembler file, | used a simple trick to move the startup code away from the
vectors to ensure that it doesn’t encroach on the Philips ISP Flash Loader low RAM area.

IC++ - crt.5 - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

= o 7
Jf‘j'. ||mJ@'@'@'@'J%'O'%'J@@"J“-C:"-' F | Rcic++ >
@fCICJrJr P... & ! =04 demoz 106_blink_ram,cmd m@ ks | = =0
5w ldr PC, FIQ iddr ~ An outling is not
- - | B ! - § available.
== demo2106_blink_flash ~
[]__0 Binaries = Reset Addr: .word Reset Handler /% defined in this module helow */
15 Includes Undef Addr: .word TNDEF_Routine /% defined in main.c
-] Ipc21ix.h SWI_Addr: Lword SWI_FRoutine /% defined in mwain.c */f
[]..@ ctt.s FAbt Addr: .word TNDEF_Foutine /% defined in main.c %/
[]--@ main.c Dabt_ Addr: .word UNDEF_Routine % defined in main.c %7
- [ert.o - [armle] IRQ_Addr: .word IRQ Routine /% defined in main.c ¥/
- [main.o - [armle] FI(Q_Addr: .word FIQ_Routine /% defined in wmain.c w7
[]"ﬁﬁ main.out - [armle] .word 0 /% rounds the vectors and ISR addresses to 64 bytes total */

5] ortilst
- demaz106_blink._flash.c /% zkip past Philips ISP raw usage (=ll the way to Ox40000200) */
- main.dmp T

main.hes # Reset Handler
- |E] main.map

[makefile
Ebg demoZ106_blink_ram

e &y Binaries
]'gl:.‘ Includes /% Secup a stack for each mode - note that this only Zetz up a usable stack

@ lpcz10x.h for User mode. ilso each mode iz setup with interrupts initially disabled. /7

)

- [8] crt.s | ¢ | »
- (€] main.c
al
£l

Reset Handler:

“

-] ert.o - [armle] problems | B console B2 Properties % | EeRE|#B-05-°0

- [£] main.o - [armle] <terminated > LPC2000 Flash Utility [Program] C:\Program Files\LPC2106 ISPLPC210x_ISP.exe
]--ﬁ# main.out - [armle]

<5 crblst

3
[
£
3
[
[
£
3

|

|~

| &

Remember that the entire project, code and variables, will be loaded into RAM starting at
address 0x40000000. The location counter is advanced by the directive .=.+0x1CO to push

the Reset_Handler to address 0x40000200. This leaves a hole where the Philips ISP Flash
Utility will use the low RAM. There are other ways to do this.

File MAIN.C

There is just one extra line of C code in the main program. It directs the LPC2106 to re-map
the interrupt vectors to RAM at 0x40000000.

& CIC++ - main.c - Eclipse Platform

File Edit Mavigate Search Project Run wWindow Help

= | = S :
B-lel s @&-a8-§-G-|%-0-%- @5 |vC-2- By A B | BRcic++ B
qﬁq’c++ P.. B2 2 =g demoz106_blink_ram.cmd | [8] crt.s | [8] ert.s [€] main.c m =0 EE 0. 2 =0
@ BB - _ A Faxoe ~
k% demo2106_blink_flash .f’f’_[ulalt for the PLL to lock to set fregquency T 3 Initidlize ~
E‘E‘E‘ demo2106_blink_ram while (! (PLLSTAT & PLOCE)y > & feed
H-€p Binaries || e @ IRGQ_Rauting
[]"E.l Includes /¢ Connect the PLL as the clock source @ FIQ_Routine
[]...@ lpcz1ox.h PLLCON=0x3: 3 SWI_Routine
#-[8] crbs feed():] e @ UNDEF_Routine
M6 maine |0] e o LPC2i0ch
[[crt.o- [armie] /4 Ensbling MAM and setting nuwber of clocks used for Flash memory feteh || & q
[]--- rmain.o - [armle] MAMCE=0xZ: &
- %8 main.out - [armle] MAMTIM=0xd: e A s
e E] st / ------ a h
demo2106_blink_ram.cmd<' /% Initimlize MEMAP - re-map vector teble to RAM </ Yy || 7 & i
5] main.dmp N MEMMAP = OxOZ: == = a1
-~ |Z] main.hesx =" 1| @ main
e | il oS N N e PLOCK
§ 2:::32":9 // Zetting peripheral Clock (pelk) to System Clock (cclk)) f Initialze
VPEDIV=0x1:
------ @ feed =
e | ® RS Routine
= 1 o @ FIQ_Routine v
< > < 3
Problems | Bl Consale 52 Properties & | =" Q'—E | #HE-r95-70
<terminated = LPC2000 Flash Uklity [Program] C:YProgram Files\LPCZ2106 ISPILPCZ10:x_ISP.exe

[| Witable | Smart Insert | 1:1 |

Since we are not using any interrupts in this example, this addition does not really
matter. I've just added it for completeness; you should always do this when
devising a project to run in RAM.

After you follow the next steps and get the application to execute out of RAM, you
can run a little experiment and comment out the MEMMAP = 0x02; line. It will still
run OK.

The reason for that is two-fold. First, we don’t use interrupts in this example.
Second, we use the Philips ISP Flash Loader to force the CPU to start at the
address of Reset_Handler; which is at 0x40000200. This bypasses using the
RESET vector at 0x4000000 to start the application.

File DEMO2106 BLINK RAM.CMD

The entire project, both code and variables, is going to be loaded into RAM.
Therefore, there are a few changes in the Linker Command Script file
demo2106_blink_ram.cmd.

C++ - demo2106_blink._ram.cmd - Eclipse SDK

File Edt Refactor MNavigate Search Project Run Window Help
-l B d@-&8-&8-G-|%-0-Q-|@F oo - B F5oebun |ECjcr+ &oave
EI main.c D@ makefile EI mair.c Y G

l.."ﬁ ﬁﬁﬁ'ﬁﬁﬁﬁﬁﬁﬁwﬁﬁwﬁﬁﬁﬁwﬁﬁwﬁﬁtﬁ'ﬁﬁWﬁﬁﬁﬁwﬁﬁwﬁﬁﬁﬁﬁ'ﬁ‘ﬁﬁ'ﬁﬁﬁ‘ﬁﬁﬁ‘ﬂ‘ﬁ'ﬁﬁﬁﬁﬁtﬁWﬁﬁﬁﬁﬁﬁﬁwﬁﬁﬁﬁ‘ﬁﬁ‘ﬁﬁ'ﬁﬁwﬁﬁﬁﬁwﬁﬁwﬁﬁtﬁwﬁﬁwﬁﬁﬁﬁw ﬁlll" d\:

it demoz106 blink ram.crmd LINKER SCRIPT &,

A *

il '

i The Linker 3Script defines how the code and data emitted by the GNUT C compiler and assewbler are wf

i to be loaded into memory (code goes into RAM, wvarisbles go into RAM). %7

i 7 £

fid Iny symbols defined in the Linker Script are sutomatically global and available to the rest of the * 1

il prograt. =

L A

i To force the linker to use this LINKER SCRIPT, just add the -T demo2lOe blink ram.comd directive LF

P to the linker flags in the makefile. v

4% i

i LFLLGE = -—Map main.wap -nostartfiles -T demc2106 blink ram.crad ®.

i &

i s

il The Philips hoot loader supports the ISP (In System Prograganing) wia the serial port and the IAP ®f

I {In Application Programming) for flash programming from within your application. *F,

4 *

A The boot loader uses RAM memory and we MUIT NOT load wariasbles or code in these areas. LY

4% i

A RAM used by boot loader: 0x400001Z0 - O0x400001FF (223 bytes) for ISP variables Ly

i 0x4000FFEQ - Ox4000FFFF (32 bytes) for ISP and IAP variables &

P 0x4000FEEQ - O0x4000FFDF (256 bytes) stack for ISP and IAP ®/

i n

i)

£ MEMORY MAP */

Fi | | Ox40010000 i

i e et et e o e e et o et ot e | *®/

2 | | Ox4000FFFF i §

4% 5 | varisbles and stack | &

R ¥ | for Philips boot loader | Lr:

il | 288 bytes | ®f

i . | Do not put anything here | 0x4000FEED &,

A . | = | */

i . | UDF Stack 4 hytes | 0%x4000FEDC 4—————————— _stack end L

i . | oo | */

2 7 | ALET Stack 4 bytes | 0x4000FEDS i §

A c | = | #/

R ¥ | FIQ Stack 4 bytes | 0x4000FED4 Lr:

e 5 | = | #/

A . | IRQ Stack 4 bytes | 0%4000FEDD L

A . | = | */

A . | SVC Stack 4 bytes | O%4000FECC w

i . | oo | */

i e | | Dx4000FECS)

Fid 5 | stack area for user program | L o
ﬁ’rohlems B consale %\\\Properties =3 - rﬁ - & EW
| | ‘Writable Insett 8136

File Edit Refactor MNawigate Search Project Run Window Help

- &)

@6~ -F- -0 Q- | @™ [k - S #oebug [Ehcicrs &lava

@ main.c | %makﬁfile | @ main.c |
s - | | w3 &S|
I % e S T T R | L
o * - | | *

P - | | *
R - | | b
£ - | | b
i = | free ram | it
iE ram | | LS
% - | | =
i - | | w
;T . | ee et e e e i e e e a e a s | 040000463 <—————————— _bhss_end *f
it - | | */
i - | .h=s uninitialized wvariables | i
A & g ey e ey G S S G S Sy s e | 0x40000448 <—————————— _bas_start, _edata *
E - | | ot
Fes - | | L)
s - | | G
il i | .data initialized wvariables | =y
R - | | */ g
i . [[i]
fa - | | b
Iad z |- ——_——_ | 0x40000430 <—————————— _etext, _data i
E - | | T
i S | | Ox400003 44 main */
£ = | | Ox400002c3 Initiali=ze w 3
£ 5 | .Lext 2 Code | 0x400002cO UNDEF_Routine #gh b
;T . | | Ox400002khc 3WI_Routine w
£ = | 405 bytes | 0400002k FIQ Routine *
fr o | | 0x400002kh 3 IRQ REoutine i
i & et e e e e e | Ox40000295 feed o
FE = | .text Startup Code (assembler) | A
i 5 | 116 bytes | *
Fa & e e | 040000200 Lr
il 5 | variahles used by | 0x400001FF H
Rl . | Philip=s boot loader | s
i R | 223 bytes | *
R - | | T
Fiss & | Do not put anything here | i
E - | | T
i . | m | Ox40000040 */
i - | .text Interrupt Vectors | Lo
il 5 | (re—mapped) | Ox40000000 H
s . | 61 bytes | S
i o | | w4
Rl | | ng
4 el
E =L
(Problems[E Console 22 Properties =~ 2 - fﬁ - & Eq
| | Wwiritable Insert 8:36

_ram.cmd - Eclipse SDK

File Edit Refactor MNawvigate Search Project Run ‘Window Help

Im-F@a B |ldga-8--0-[%-0-Q-|dF |-

(Prnhlems (E Console 23 Propetties

@ main.c ||::@rnakeﬁle | @ main.c = |
I [I w/ Al
a0 G A
Edi s
AE Ei%

e | | *f
i s i I w7
Kl | | OX0O001FFFF Lo
i | | */
f ¥ | unused flash eprom | */
a0 . | | G A
P flash | 55472 bytes | il
AE . | | Ei%
P 5 [| Ox00000040 " 1
£ i | Interrupt Wector Tabkle flash | i =
Kl 3 | 64 bytes | Lo =
Fr Sm——————— Fl———_——————_—————— | Ox0ooooooo H
s *f
a0 G A
Edi s
AE Ei%
/% Author: James F. Lynch ¥
e Folt
llfﬁ o ol ol o o ol o o o o o o ol o o ol e ol o o ol o ol ol o o o o ol o o o o ol o o ?f
<
-t

|] writable Insert 436

| added quite a bit of annotation above to make it very clear how the memory (flash and
ram) is organized.

& C/C++ - demo2106_blink_ram.cmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
=1 =N k13 7
Is~-Heg @ &-8-8-C-|%-0-%- |®@F [bo-a0- B | Bgcic++ »
emoz106_blink_ram,crnd X @ crt.s | @ crk.s | @ mair. ¢ | @ mair.c | =0
~
/% apecify the LPCZ106 memory areas +/
HEMORY
i
flash 1 ORIGIN = 0Ox00000000, LENGTH = 128K /% free FLAZH EPROM area ¥/
ram 1 ORIGIN = 0Ox40000000, LENGTH = 64K /% free RAM area */f
i
/% define a global symbol _stack end wf
_st,ack_end = 0x4000FEDC;
]
Prablems | B Consale 12 Properties & | M g'—ﬁ | #E-ry-=0
<terminated > LPC2000 Flash Ukility [Pragram] ©:Proaram Files\LPC2106 ISPILPC210x%_I5P. exe
| | “Wiritable Insert 1:1 |

Above | defined two memory areas for flash and RAM, consistent with the LPC2106
memory map. Of course, we're going to load everything (code and variables) into RAM!

Note that | also created a global symbol, stack_end, that is used in the startup routine to

build the various stacks. The address is positioned just after the stacks and variables used
by the Philips ISP Flash Utility.

£ CIC++ - demo2106_blink_ram.cmd - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

les-He b | 8-a8-8-G- |%-0-Q- @& |- - | oo

B demoz106_blink_rarm.crnd 3 @ crt.s | @ crt.s | @ main.c | @ main.c | =08

/% now define the output sections */ 5
SECTICNS
{
startup : { F{.starcup)l >ram /% the startup code goes into FLASH +/
.Cext /7 collect all sections that should go into FLASH after startup
{
Fl.Lext) f*% all .text section=z (code) L
*(.rodata) /% all .rodata sections [(constants, 3trings, etc.) +/
*(.rodata®) /% all .rodata® Zections (conatants, strings, eto.) f
*l.glue 7) ¥ oall .glue 7 sections ino idea what these are) */
*l.glue_ 7t) ¥ oall .glue 7t sections (no idea what these are) LF)
_BLEXE = .} /% define a global avwbol _etext just after the last code byte L
} rram S% put all the shove into FLAZH +/
.data : /* collect all initialized .data sections that go into RAM */
{
_data = .; /* create a global symbol marking the start of the .data section */
*|.data) /T all .data sections %/
_edata = .; /% define a global symbol marking the end of the .data section */
b orram /* put all the ashove into RAM (but load the LML copy into FLASH) */
.hs= /% collect all uninitialized .bss sections that go into RAM +/
i
_bss_start = .: /% define a global symbol marking the start of the .hss section #/
*{.has) /% all .hss sections #/
Y orram /% put all the sbove in RAM (it will he cleared in the startup code %/
. = ALTGM4): /¥ advance location counter to the next 3Z-hit boundary #/
_bss_end = . /¥ define a global sywbol marking the end of the .bzs section #/
_end = .: /% define a global sywbol marking the end of application RAM +/
} =
b
Problems | B Consale 52 Properties & | [E™ 5@ |) = - rﬁ -=8
<terminated = LPC2000 Flash Utility [Pragram] Ci\Program FilesiLPC2106 ISPILPC210x_ISP.exe

I ‘Writable: Insert 1:1 |

Above is the final part of the Linker Command Script. Notice that everything is loaded into
RAM.

You might ask, “Do we still copy the .data section initializers?” | left the copy operation
intact in file CRT.S but it now essentially copies over itself (wasteful). | wanted to keep
things very similar. You could delete the .data initializer copy code in crt.s to save space.

You might also ask, “Do we still clear the .bss section?” The answer is absolutely yes, RAM
memory powers on into an unknown state. We want all uninitialized variables to be zero ar
start-up. Of course, stupid programmers rely on uninitialized variables to be zero at boot-
up, this is how they get into trouble with uninitialized variables (not all compilers do this
automatically).

At this point, if you haven't cleaned and built the project, do it now.

Make sure the BSL jumper is installed.

Now use the “External Tools” toolbar button to find the Philips ISP Flash Utility and start it.
To make sure that we are not fooling ourselves, click on “Erase” to clear the flash memory.

i LPC2000 Flash Utility
File Buffer Help

m LPC2000 Flash Utility V2.2.0

— Flazh Programming —Eraze / Blank — Communication
Filename; Connected To Part:
|Checlipsetwork space\dema21 06_blink_flas .. | Blark Check {+ Entire Devics COM1: -

i Selected Sectors
Usge Baud Fate:

Execute Code

|Jpload ta Flash F -
stter Upload 7 g Wt Sectar | 0 [12200 [~

Eraze I—
Compare Flazh I arual Beset : Epd Sector 4 Time-Out [sec] I 2
N
O —
— Device Use DTR/RTS
D evice: . for Reset and
ILPC2‘I 05 vl Read Part ID.I - Eoot Leader
#TaL Freq. [kHz]: |1 4746 Device D Boot Loader ID:I Selection

Erazed LPC2000 Flash Successfully

Now we can be sure that the blinking LED is not the Flash application running.

Click on “Buffer — RAM Buffer Operations.”

% LPC2000 Flash Utility

LPC2000 Flash Utility vV2.2.0

— Flash Pragramming —Eraze / Blank — Communicatian
Filename: _ _ Connected To Port:
IE:'\ec:lipse\wurkspace\demu?l 06_blink_flaz ... | Blank Check & Entire Device COk1: -
" Selected Sectors
Usioad o Flach v Erecute Code |Jze Baud R ate:
oad ta Flaz [-
F aterlpload || ey st e S 14200
Eraze) I_
Compare Flazh Ik anual Feset | : | e 4 Time-Out [sec]: I 2
— Device Ulze DTR/RTS

Deviee: [LrC2108 -] Foad Part 1D [~ for Reset and
#TAL Freq. [kHz]: |14?45 Device 1D Eaet Leaiks ID:I Selectian

Erazed LPCZ000 Flash Successfully

The RAM Buffer screen now appears. Click on “Load Hex File.” This is just an operation
that fetches the hex file and puts it into the Philips ISP Flash Utility.

k& LPC2000 Flash Utility - RAM Buffer

tH4000 0000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Uiy uiGiiyiy —
tH4000 0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGYyiyyiiyiyii
tH4000 0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUYHUHhhiiyyiy
EH4000 0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH4000 0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Uiy iuiGiiyyy
tH4000 0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGYyiyyiiyiyii
tH4000 0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUYHUHhhiiyyiy
tH4000 0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH4000 0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T T
tH4000 0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGYyiyyiiyiyii
tH4000 0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUYHUHhhiiyyiy
tH400000BD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH400000C0 FF OFF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T T
tH4000 0000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGYyiyyiiyiyii
tH400000ED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUYHUHhhiiyyiy
EH400000FD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH4000 0100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T T
tH4000 110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGYyiyyiiyiyii
tH4000 20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUYHUHhhiiyyiy
tH400001=%0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH4000 0740 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T T
tH4000 150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T
tH4000 160 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUYHUHhhiiyyiy
tH400001¥0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH4000 0120 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGHUiHHjiii
tH4000 130 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T
tH4000 A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGiiyyiiyjiji
tH40001BOD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij
tH400001CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGHUiHHjiii
tH4000 10O FF FF FF FF FF FF FF FF FF FF FF FFFF FF FF FF [T
tH4000 MEDC FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUGiiyyiiyjiji
tH400001FD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YUUUGHiiyyiijijij

-
I

Load Hes File Uploadto RéM | Dowrload RéM | . SaveHesFile | Fill Bufer |
Code E secution Address Range Fill alug: IF
I— * Selected Range Start: I&H#DDDDDDD
Fun from Address EH40000200
¢ Thumb & AR " Entire Buffer End: |&H4000FFFF

LPC2000 Flash Utility

Notice that the button titled “Run from Address” has the value &H40000200 in it. This is
thanks to the ENTRY(Reset_Handler) directive in the linker command script file. The
Philips boot loader will simply load 0x40000200 into the PC register and let her rip!

When you click on the “Load Hex File” button, the following dialog will be presented.

Open

Look ire | (£ demo2106_blink_ram 3] «mek e
: a r|'|-E|ir|.|'|E::-::
My Recent
Documents
Desktop

by Diocuments

&

by Computer

My Metwork. File name: Imain j Open
=

L

Places

Cancel

Filess of type: IHE:-: Files [* hex]

i

Browse for the main.hex file in the project directory and click “Open”.

The following warning is presented. Since | advanced the location counter past the low
RAM area used by Philips, it still thinks that there’s code in there. If | had elected to make
the interrupt vectors a separate section, | could have avoided this warning.

LPCZ2000 Flash Utility - WARNING

' E Code in Boaot Loader RAM Area (BH40000120 - &H400001FF) or Book Loader Stack Area (Top 288 Bykes of RAM) will be Ignored!
.

It will still execute OK, of course, since the hex file has no bytes defined for the area where
we advanced the program counter past the Philips ISP low RAM usage.

Now click on the “Upload to RAM” button to load the hex file into the LPC2106 RAM
memory.

You will see a “progress bar” at the bottom of the screen and it will indicate that the
operation has completed.

ki LPC2000 Flash Utility - RAM Buffer

LH400O0OOOD 12 FO O 9F ES 18 FO SF ER 18 FO 9F ES 18 FO 9F E&] EPE EG] B B
&HADOODOOTOD 18 FO O 9F ES 00 00 A0 E1 14 FOO 9F ES 14 FO 9F EG LOBd.. 3.3M3.503
LHADOODOODZ200 00 02 00 40 CO 02 00 40 BC 02 00 40 CO 02 00 40 ...BA..@%. .@A..@
LH400O OO0 CO 02 00 40 B4 02 OO 40 B2 02 00 40 00 00 0O 00 .. R ..@, ..6....
EHADDODOO40 00 00 00 0o 00 00 o0 00 00 00 00 00 00 00 00 00
&HADOOD OO0 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00o
LHADDODOOED 0O OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00o
LH40000070 00 00 00 00 00 00 a0 00 00 OO 00 00 00 00 o0 a0
&HADOODOOS0 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00o
LHADDODDOOS0 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00o
LH400000s0 00 00 00 00 00 00 a0 o0 00 OO 00 00 00 00 o0 a0 L.
&HADODODOOED 0O OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LHADDODOOCD 00 OO 00 0o 00 00 00 00 00 00 00 00 00 00 00 00 L. .o
EHADOODOODD 00 QO 00 00 00 00 00 00 00 00 00 00 00 00 00 00
GHADODDOODED 00 0O 00 0o 00 00 00 00 00 00 00 00 00 00 00 00 L.i.....
&HADODODOOFD 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LH4DDODO7OOD 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00
EHADDODOTT0 00 00 00 0o 00 00 o0 00 00 00 00 00 00 00 00 00
&HA0000120 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L. ...aaa.a.
LH4000C0130 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L. ...iaaaaa.
LH40000740 00 00 00 00 00 0o a0 o0 00 00 00 00 00 00 o0 a0iaa..o.
&HA000C150 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L. ...aaa.a.
LHA0OODO1ED. 0O OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00iaaa.a.
EH40000170 00 00 00 00 00 0o a0 o0 00 00 00 00 00 00 o0 a0 ..o ..iiaa...
&HA000C180 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00aaa.a.
LH400ODC0190 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00aaa.a.
EH40OO A0 0O QO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L. ..iaaa.ao.
&HADODODOIEBD 00 OO 00 0o 00 00 oo 00 00 00 00 00 00 00 00 00 L.ieaaeaa
&HA000C0ICO 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L. ...aaa.a.
LH40DODOIDO 00 QO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 L. .o ...aaa.a.
EHADDODOTED 00 00 00 0o 00 00 o0 00 00 00 00 o0 00 o0 o0 00a.
&HADODOCTFD 00 OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00o ...aaa.ao.

Load Hex File Dawnload Rk Save Hex File Fill Bufer |
Code Execution Fill W ale IF
+ Selected Range Start: |&H40000000
Rur from Address I&H 40000200 .
" Thumb * ARM " Entire Buffer End: I&H A00004:3F

LPC2000 Flash Utility

Buffer Upload Successfully Completed

You do NOT have to remove the BSL jumper. Click on the “Run from Address” button to
execute the program.

k! LPC2000 Flash Utility - RAM Buffer

&H40000000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUURRGiGGGg l—'
&H4000 00010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUROGGG
LH4000 0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH400O OO0 FF O FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GHUYUUiHiiyyyui
LH40000040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUURRGiGGGg
&H40000050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUROGGG
LH40000O0ED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH400OOO70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T R
LH40000080 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUURRGiGGGg
&H40000030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUROGGG
LH4000 0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH400OOOBODC FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T R
LH400000CO0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUURRGiGGGg
LH4000 0000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUROGGG
LH4000ODEDC FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH400OOOFOD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T R
&H40000100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUURRGiGGGg
&H400001710 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUROGGG
LH40000120 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH4O00O0 O30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T R
LH40000140 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUUUUUGGGGGG
&H40000150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUROGGG
LH400001ED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LtH4O000OM70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUGGyyijiii
LH40000180 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUUUUUGGGGGG
&H40000130 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UGGy
LH4000 0120 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH40000MBOC FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUGGyyijiii
LH4000MCO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UUUUUUUUGGGGGG
tH40000M0O FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UGGy
LH400001ED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUGUggyyiijiii
LH40000MFOD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF GUUUUUUGGyyijiii

Load Hex File | Upload to Rébd Dovnload Rdbd | Sawe Hex File

]
Code Addresz Range Fill */ ale: IFF

* Selected Range Start: I&H-'-HJEIDEIEIDEI
= Entire Buffer End: I&HdDDDFFFF

LPC2000 Flash Utility

Fill Buffer |

&N 40000200
7 Thumb @+ &R

Run from Address

Your application should blink, just like the Flash EPROM version did. Time for the Bigfoot
picture!

IT BLINKS!

:
o
@
-
i
"

£

"
S
an
qaa
il
ikl
Ean
s
LR

21 Debug the RAM Project

The previous exercise, running the RAM project from the Flash Utility, was of
academic interest but essentially of no practical value. Well, it is kind of cool that
you can do that with a flash utility.

Eclipse/CDT interfaces seamlessly to the GDB debugger that is an integral part of
the GNU tool chain. When you click on the “Debug” button, you will be able to
watch the execution of your program graphically as it goes from breakpoint to
breakpoint. You can park the cursor over a variable name and see its current value
(assuming that execution has stopped, of course). You'll be able to look at
structured variables, see the ARM registers and have the ability to modify variables
and registers.

We will need the following hardware setup:

Install the Debug

JTAG jumper while
Olimex ARM JTAG Adapter | running from RAM

e — LPT1

.p
‘e
(B e

i
P g o T (12| 20-pin
.
"@; 8,3 COPYRIGHT(C) 2003 ee|| JITAG

The BSL jumper
generally doesn’t
matter while using
JTAG

am
[}
[}
-n
SIS NS EE N EEEEENEEEEEEES
SN EEEEEENSNEEEEEEEESR
EEEEEEESEEEEEEEEEEEEEER
EEEEEEEEEEEEEEEEEEEEER
EEEEEEESEEEEEEEEEEEEEEN
SEEEEEEESEEEEEEEEEEEEEN
SEEEEEEEEEEEEEEEEEEEED
SEEESEESEEEEEEEEEEEEESE
HTTP: //HWW. OLIMEX. COM/DEV

rEEESEEEEEEEEEEEEEEN

“EEEEEEEEEEEEEER

8
o]

®

The Olimex ARM JTAG Adapter is a clone of the Macraigor Wiggler JTAG
interface. It costs about $19.95 and all fits into a DB-25 shell. | bought a straight-
through printer cable from my local computer retailer and fitted it from the LPT1
printer port to the ARM JTAG Wiggler. The Wiggler was then fitted to the 20-pin
JTAG header on the Olimex LPC-P2106 board.

The red stripe on the ribbon cable is pin 1 and should be nearest the power plug.

The Debug JTAG jumper should be fitted. It doesn’t matter if the BSL jumper is installed or
not. Make all these connections with the power off.

A. Blunt Talk About the Wiggler

Let's talk bluntly about the Wiggler. The Wiggler is one of many products from the
Canadian company Macraigor. It connects the parallel port of your PC to the 20-pin JTAG
header on the Olimex LPC-P2106 board. It is just a simple level shifter and a transistor.
Macraigor charges $150 for it; the Olimex clone is about $19.

¥

CY

oW

There are several schematic diagrams on the web for the Wiggler; notably Leon Heller has
one on the LPC2000 message board on Yahoo. You could build your own but | doubt you'd
save that much money after paying the shipping from Digikey and the gas to drive to Radio
Shack. The Olimex version is a fair deal.

Obviously the Macraigor Company is not happy about all these clones running about, so
recently they slipped an impediment into the works. The latest version of OCDremote; their
free JTAG server for the Wiggler and other products, is expecting a connection (short
circuit) between pins 8 and 15 of the LPT1 printer port. This has made a lot of people fail.

Olimex has revised their design and modified their stock of Wigglers to make this
connection, but there are large numbers of the device out there that don’t have this
modification (like my Olimex Wiggler).

Use an ohmmeter on the 25-pin printer connector on the Wiggler to see if these two pins
are connected. If not, you can easily disassemble the Olimex Wiggler and tack-solder a
jumper to do the job. Again, you must connect pin 8 to pin 15.

| used that 30 gauge Radio Shack blue Teflon coated hookup wire and a microscope to do
the soldering above. If you have a good magnifier; the DB-25 pins on the wiggler have the
pin numbers embossed in the white plastic above and below the rows of pins.

We're not quite finished with our Wiggler suffering. There’s the final issue of the PC Printer
port mode. Most modern PCs, like my new Dell, have the Printer Port defaulted to “ECP”
mode.

The Wiggler will not work with the printer port configured for ECP mode.

The Macraigor web site has a FAQ with the following citation:

What mode must my parallel port be iIn?

As far as the parallel port is concerned, a Wiggler is a simple uni-
directional device. It will work with the parallel port in any mode
EXCEPT "ECP™. It will NOT work in ECP mode at all.

The Raven works best with a parallel port in EPP mode. It may work
in ECP mode. If the parallel port is in an older mode, such as uni-
directional, AT, or compatible, the Raven will work but slower.

Remember, the mode is set in the CMOS bios of your computer.

On my Dell Dimension Desktop PC, the CMOS setup can be entered if you hit the F2 key
as the machine boots up. By maneuvering around the CMOS setup, you can find the
Parallel Port setup and see what mode it is set up as. If it's ECP mode, change it to EPP
mode, as | did in the screen photograph below. Save the CMOS setup and exit. My printer
is a USB device, so this action didn’t effect my printer operation.

arallel Port ..

Diskette Interfa
Prinary Video Controller
Onboard Video Buffer

Hepﬂ'{‘T

Let’s review the hardware setup one more time.

Doesn’t matter
if the BSL
jumper is
installed or not.

o No need to
eofnfe
[0 nOOeaon unplug the
Cl pgogoooo 0
AO00GO0a500a0 serial cable
anO0o0Gaa0ana .
gooono poogegon
gooooooooocoooos
adooooouooooocioar
oon CiiC '_:c_":u l?"t1'l.];l
D SR,
- e o' e Tre el
L : .': : : L QT < ‘_{_‘:‘T C -
panoaodad vefe gl
L ofvjefvivjefeofeofvicic folicfe fed i
..'I.".‘vv-‘_i:.(tl‘ Powerplugfrom
. vieje efeofefelelet= ©
qaaaanoIaEEHEY 9 volt wall wart
olelejelvfofefuie -
2 power supply

Red stripe on ribbon
cable must be next to
Debug JTAG jumper and
the power plug.

The Debug JTAG
jumper MUST be
installed

Power up the Olimex LPC-P2106 board and press the RST button for good luck!

B. Final Preparations Before Starting Eclipse Debugger

Before we start the Eclipse Graphical Debugger, | should mention that
debuggers absolutely hate compiler optimization. This one is no different. We
have been compiling with —O3 and you will find some strange things happening
when you single-step at that optimization level.

Just to be sure, let’s turn off optimization. Go to the makefile and change the
setting to —OO0 and rebuild!

File: makefile.mak

NAME = demoZl0d hlink ram
Turn off compiler
cC = arm-elf-goo .. . b ttin
LD = arm-elf-ld —v optlm!zatlon y.se g
iR - armeelf-ar compiler flag to:
LS = arm-elf-as
P = arm-elf-objcopy -OO0 - no optimization
oD = arm—-elf-objdump
CFLAGE = -I./ -c —an—u:Dmmn:\n—g
AFLAGE = —-ghls -mapcs-32 -0 CEtTo
LFLAGE = -Map wain.map -Tdemozl0e blink ram. cmd
CPFLAGE = -0 ihex
ODFLAGS = —x ——syIns
all: test

C. Create a Debug Launch Configuration

The first order of business is to set up a “debug launch configuration.” The
quickest way to get to the “debug launch configuration” screen is to click on the
“insect” button (insect — bug — get it?). Specifically, click on the down arrowhead to
bring up the debug pull-down menu.

Click on down

— arrowhead to
get the pull-

down menu

Click on the “Debug ...” selection in the debug pull-down list to bring up the Debug
configuration screen.

& CJ/C++ - main.c - Eclipse SDK
File Edit Refactor Mavigate Search Projeck Run Window Help

= | = & 2 R
Ici-HEa @ | g-a-d-G- |- 0-%- |8 & -8 -5~ E | BRicicH+ >
B cic++ Projects 52 Navigat0r| = 0| £G 1 demo2106_blink_ram =0
Y | E ‘_J‘><‘P = ol o e e e e i o o o o o o o o o ~

-~ 100 demo2106_blink_flash % Debug... Arations —
El’% demozlnﬁ_blink_ram - . ko o o o o ol o ol 1‘}."

[+ Binaries

-2 Includes void Initislize(void):

[+ [lpc21oeh void feedivoid):

- [§] crt.s

E]---@ main, c void IRQ Routine (void) _ attribute_ {(interrupt("IRQ")));

I:I--- crt.o - [armle] roid FIQ Routine (void) _ attribute_ {(interrupt("FIQ"))):

(- [qp main.a - [armie] void SWI_Routine (void) _ attribute_ ((interrupt ("SWIT))):

G- %% main.out - [armle] void UNDEF_Routine (weoid) _ attribute [(interrupt("UNDEF"))]:

----- =] crt.lst

demoz106_blink_ram.cmd PR L L L R L]

""" =l ma!n.dmp Header files v

----- =] main.hex —

----- =] main.map

""" | makefile Problems | B Console 52 Properties = 2 -r5-=0

A console is not available,

In the “Debug Launch Configuration” screen below, you can see the Zylin modification.
Note that one of the possible debug configuration types is now “Embedded debug
launch.”

You will tend to create a separate “Embedded debug launch” configuration for every
project you create; it's very convenient for people who have multiple projects going on at
the same time.

Click on the Zylin “Embedded debug launch” configuration and then “New” to get started.

& Debug

Create, manage, and run configurations

Zylin added
this debug

configuration

Configurations;

----- E CJiZ++ Atkach to Local Application
----- E CJiC++ Local Application

----- (] €/C++ Postmartem debugger [E Perspectives

""" i Eclipse Application These settings associate a perspective with Embeddad debug launch launch
..... Z¢ Embedded debug launch | configurations. & different perspective may be associated with each supported launch
_____ B Java Applet maode, and can optionally be opened when a configuration is launched or when an
5] licati application suspends via the Debug preferences. To indicate that a perspective should
""" Java Application not be opened, select "Mone",
----- Ju JUnit
----- J& Uit Plug-in Test
----- [T Remote Java Application Debug:

----- =] SWT application

Restore Defaults |

< e | elete | Apply | Revert |

Debug I Close |

In the “Main” tab, set the name to anything you like and the project to
“demo2106_blink_ram.” | was, of course, lazy and made the debug configuration
name the same as the project. Set the C/C++ Application to “main.out.” Main.out
is an arm-elf format file that has the executable and debug information within the
file.

= Debug

Create, manage, and run configurations

Canfigurations: EEH I demoz 106 _blink_ram
E C/iZ++ Attach to Local Application

“[E] C/C++ Local Application o
% C§C++ F‘Dstmafll:jem debugger Main ! 3‘3 Debugger I u Commands | Ey) Source l El Common !

4 Eclipse Application
=156 Embedded debug launch Project:

i 5@ demoZ106_blink_ram - B I
-] Java Applet demoz106_blink_ranm FOWISE. .\

3] Java Application ClC++ aApplication:
;---J‘:_I JUnit

- J0 0nit Plug-in Test

'._j Remote Java Application
[ST Application

Imain.cuut SEarchPrDject...l Browse. .. I

Apply I Revert l

Debug I Close |

e | Delete

Under the “Debugger” tab, use the “browse” button to set the “GDB debugger” text
window to “c:\program files\GNUARM\bin\arm-elf-gdb.exe” and check the box that
instructs the debugger to stop at main() on startup.

& Debug

Create, manage, and run configurations

Configurations: Mame: | demoz106_blink_ram

El C/iZ++ Attach to Local Application
[CfC++ Lacal Application
El C/iZ++ Postmortem debugger
g Eclipse Application
|_—"_::c Embedded debug launch
B ="l d=rmo2106_blink_ram
\-[F3 Java Applet
i..[T] Java Application
e Jr Unie
i JUnik Plug-in Test
',_j Remoke Java Application
o[ST Application

Main ﬁ Debugger l ;| Commandsl Ep source | Bl Comman

Debugger: !Er--t--sc!-i%-: GDE

rDebugger Options

Mew | Delete Apply | He e I

Dehbug I Close |

Under the “commands” tab, enter the following two GDB commands to run at startup:
target remote localhost:8888
load

£ Debug

Create, manage, and run configurations

Configurations: Mame: | demoZ106_blink_ram
~~[E] CfC++ Attach to Lacal
% E:::E:: ;DDZ‘;{:;?F;I::;EE Mainl :f:ﬁ Debugger B commands | 'EV Source | El Commoan |
42 Eclipse Application
[=I-=¢ Embedded debug launct Carnmands
-5 demoz106_blink_fla
¢ heFg demoz106_blink_ra
-] lava Applet
+-[3] Java Application
o JUnik
- JU Junit Plug-in Test
- Remote Java Application
“o [SWT Application

target remote localbost: 3355
load

| Fas

I

Mew Delete Apply | Revert |

Debug I Close |

The “target remote” command specifies that the protocol used to talk to the application
is “GDB Remote Serial” protocol with the serial device being a internet socket called
localhost:8888 (the default specification for the Macraigor OCDremote driver).

Target Remote supports the GDB “load” command; the specific download file
(main.out) was specified above in the “main” tab. In this case, the “load” command will
download the executable code into RAM and the Eclipse/GDB debugger will use the
symbol information contained within the “main.out” file to locate all statements and
variables.

When we debug FLASH programs, we can't use the “load” command since the GDB
debugger cannot program FLASH memory. In this case, we will use the Philips Flash
Utility to burn the executable into FLASH and substitute the GDB command “symbol-
file main.out” to provide the debugger with the statement locations and symbol
information. There is more on this later in the tutorial.

The “source” tab can be left at its default settings.

Likewise, the “common” tab can be left at its default setting. Click on “apply” and then
“Close” to complete specification of the debug launch configuration.

D. Switch to Debug Perspective

What you see on the screen when using Eclipse is called a “perspective” and up to now, we
have been using the “C/C++” perspective. Once the application has been built, we must

switch to the “Debug” perspective to debug it.

One way is to change the perspective in the “Window” pull-down menu as shown below.

Project Run

- @ -

TN Help

Miev Window
Mews Editar

H-0-Q%- | =

=l Cpen Perspective *| & Debug
. . &~ Team Synchronizing
int mai))
Customize Perspective,,.
Save Perspective 8s... Other...
uns Reset Perspective
sta .
t Close Perspective
sta
Close All Perspectives
sta
sta Mavigation 3
sta
Preferences...
sta

It's also convenient to click on the “Debug Perspective” button on the upper right of the
Eclipse screen. Below is the “Debug” perspective.

You can drag this s-
shaped edge to expose
all the available
perspectives. % |

Search Project Run Window

0 B S|

@ lpc210:.b L@ makefile m = B | outline Disasssmb\y bt =08

int main (void) { L]
unsigned int 3: AL
static int a,b,c; JF static un
static char d; fF static un =
static int w o= 1; 4/ static in
static long x = 5; /f static initia
static char v = 0Ox04; JF static in
static int z = 7; // static in
const char *pText = "The Rain in 3pain®:

// Initialize the system
Initialize():

// set io pins for led PO.7
IODIR |= 0Ox00000080; // pin PO.7 is an output, everything ™
| >
B consale 52 Tasks] I:-"Ill #E2-r5-708
C-Build [demoz 106 _blink_ram]

E | Wiritable Smert Insert | 411

E. Start the OCDRemote utility
The Macraigor OCDRemote utility must be started before the Debugger is launched.

Remember that we set up the OCDRemote as an External Tool. It's easily started by
clicking on the pull-down arrow of the External Tool button. Note the little red toolbox on

that button.
Debug - main.c - Eclipse SDK

File Edit Refactor Mawvigate Search ject Run Window Help
- @ [%-0f(R-)®®& [§ -1

%5 Debug 52
- I

Run As 4
q External Tools...

Organize Favarites...

The well-known problem of the Wiggler/OCDRemote combination is that it doesn’t always
start. Below is an example of where it does start properly.

£ Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Run Window Help

I HE B3 -0-%- |@®s|§- -7 e - e e
m = O || 09= variables &2 Breakpoints|Expressions|ﬁu <t | o ® % = =0
Bk S|l p|lFir”

E--Q OCDRemate [Program]

B o B ovgwiniusrilocalibinlocdremobe. exe

<«—— 1 Thereitis!

[H] Ipczimeh | @ makefile (@ main.c &4 = 8 ||outine r Disassembly &2 =8
int main (void)]
unsigned int 3 4L
statiec int a,h,c: /f static un
static char d: // static un =
static int w o= 1: // static in
static long x = 5; Jf static initia
statiec char v = 0x04; ff static in
static int z = 7: ff static in
const char *pText = "The Rain in Spain®:
Sf Initialize the system
Initialize():
// =set io pins for led PO.7
IODIR |= Ox00000080:; S/ pin PO.7 iz an output, everything ¥
< I | >
Bl consale 32 Tasks E%lEﬁEﬂL’E'Fﬁ'DE‘

OCDRemoke [Program] C:cygwiniusrilocalibiniocdremote. exe

No error messages in the console!

When everything works, the GDB Debugger communicates using the GDB Serial Protocol

to an internet socket called localhost: 8888,
Launch Configuration (the “command” tab).

we specified this in our Embedded Debug

The Macraigor OCDRemote DLL intercepts the GDB Serial Protocol via the internet socket
and converts it into JTAG signals on the LPT1 printer port connector. The Wiggler device
merely translates the JTAG signals to 3.3 volts for use with the Philips LPC2106

nﬂcroprocessor

The GDB “load” command, shown above, d

Here is an example of OCDRemote failing.

ownloads the executable into RAM.

& Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Rum Window Help
Icd~ &

& |- 0-&%- |@® ¢ |5 -5 -6 -a

ﬁ %CIC++ :)Lg‘g):Debug

»

m = 0| ed= variables =2 Breakpointlexpressionslﬁ. =t B | g R & = =0
% | A
=8 <kerminated =OCDRemoke [Program] o
%EH <terminated, exit value: 1>C: < NOte that It SayS
“terminated”

/¢ Initialize the system
Initialize():

/f =et io pins for led PO.7
IODIR |= Ox00000080;: £
<

pin FO.7 is an output

[B] lpcz10e.h | & makefile (@ main.c &3 = O || outline r Disassembly &3 =0
int main (void) { ~
unsigned int iz 4L
static int a,b,o: Jf staric un
static char d; Jf static un =
static int wo= 1: ff static in
static long x = 5: f# static initia
static char v = 0x04; ff static in
static int z = 7; 4/ static in
const char *pText = "The Rain in Spain®:

everything
>

"

El consale 22 Tasks

R|EElAB =0

=terminated > OCDRemote [Program] C:loygwintusrijocalibintocdremote, exe

OCDhemon InitializeTarget Error @ Cakle Disconnected

Oooops, got an error
message in the console!

If you have trouble getting OCDremote to start; try these remedies:

[J
Bring up the Windows Task Manager
of running tasks. If there are multiples
all of them and start over.

[]

You may have accidentally started multiple copies of OCDremote.

(ctrl-alt-del) and search the list
of ocdremote.exe, terminate

Keep trying; I've clicked it ten times before it started (this is simply Voodoo).

Make sure your computer is not running cpu-intensive applications in the
background, such as internet telephone applications (my beloved SKYPE for
example). The OCDRemote/wiggler system does “bit-banging” on the LPT1 printer
port which is fairly low in the Windows priority order.

For Windows XP users, here is a simple way to get rid of all those background
programs. Click “Start — Help and Support — Use Tools... - System Configuration
Utility — Open System Configuration Utility — Startup Tab”

= System Configuration Utility

| General | S¥STEM.INE || WININD | BOOT.INI || Services | Startup |

Location o]
HKLI SOFTWARE MicrosoftiwindowsCurrentier .

Command
c:\PROGR A~ mecafee. ..

Startup Ikerm
mcupdake

McAgent

[GoogleDeskiap
[hkemd

[igfuctray

[mntemEm

|:| Camerahssistant
[T Elkctrl

[1nstallHelper
[wwcoms:

[mcagent

1 meundate

<

c:\PROGRA~\meafee. ..
“CiProgram FilesiGoa. ..
CHWTHMDOWS sysbem,
CHM IO S sysbem,
Ci\Program FilestIntel,.,
C:\Program FilesiLogit. ..
Cr INDOYWS system, ..
Ci\Pragram FilesiLagit...
CHAWTMDOWS sysbem,
CPROGRA~ 1 mcafee,
CAPROGRA~1mcafe. .,

HKLISOFTWARE Microsoftiwindows\Currentier
SOFTWAAREMicrosoftlwWindows CurrenttersioniRL
SOFTWARENMicrosoft Windows\CurrentYersion|RL =
SOFTWAREMicrosoftWindows\CurrentYersion Ry
SOFTWAREicrosoftWindows| CurrentYersion Ry
SOFTWAREMicr osoft Windows, CurrentYersioni R
SOFTWAREMicrosoftlwWindows Currenttersion|RL
SOFTWARE Microsoft)WwWindows)Currenttersion| R
SOFTWARENicrosoft windows | Currentersion| R
SOFTWAREMicrosoftWindows, CurrentYersion Ry
SOFTWARE MicrosoftiwindowsiCurrentversiontR ¥

Disable &l

N
|

[Enableal (\'] [

l

K,]’_ Cancel J apply Elp

Click on “Disable All”. Windows will ask you to re-boot and the PC will restart with
none of the start-up programs running. Use the same procedure to reverse this
action.

Try a lower speed (JTAG clock rate). The slowest speed is 8 (4 kHz) whilst the
fastest speed is 1 (380 kHz).

Go to bed,; let it win tonight.

F. Start the Debugger

Our “Debug Configuration” has been defined and we’ve switched to the Debug perspective.
We started the OCDRemote utility and verified that it's working.

Now is the time to start the debugger. Since the “Embedded Debug Launch” configuration
“demo2106_blink_ram” was the last configuration accessed above, clicking on the “Bug”
button will suffice. If you're not sure, use the pull-down” arrow to see exactly what

configuration will be started.
£ Debug - main.c - Eclipse SDK

m File Edit Refactor Mavigate Search Project Run Windc
Either one -y @ %00 - &

; Seareh < will start the —> #& Debug &2 a 1 demo2106_blink_ram
3 - Debugger.

Debug As 4

%ﬁ: Debug...

Organize Favorites, ..

The Debugger will start up and execute the two commands specified earlier. It will connect to the
target via JTAG and start a download of the application. You can watch the progress bars at the
lower right of the screen.

& Debug - main.c - Eclipse SDK

File Edit Refactor Mavigaste Search Project Run Window Help
IN-HEB/%-0-Q- |@®s |4 i o B Roor [Boom 7

M = O |[09= variables 52 Ereakpu\nts‘ExprEss\Uns|ﬁ- =5 =3 | &R & ~ =0

I T - T
= q QCDRemote [Program]
E CHioyawiniusrilocalibinlocdremate, exe
[=-5¢ dema2106_blink_ram [Embedded debug launch]
= é@ Embedded GDE (9/9/05 12:38 AM) (Suspended)
E-gf Thread [0] (Suspended)
P8 | -smbol s not avai

b% Debugger Process (9/3/05 12:38 AM)

]
s

[H] Ipc2103.h ||_@ maksfile r@ main.c 2 = B |[outline (Disassembly &2 =0

int main (void) { bl Pending. ..

unsigned int
static int
static char
static int
static long x =

£
J/ static un
/f static un =
// static in
/¢ sratie inivdia

=3
0

mowonos oo
1
-

static char = Dx04: f/f static in
static int =7 // static in
const char pText = "The Rain in Spain™; Watch the download
/¢ Initialize the system progress bars here-
Initialize();
/¢ set io pins for led P0O.7
IODIR |= Ox00000030; /¢ pin PD.7 iz an output, everything ¥
< >

& corsole 2 Tasks A|EEEE|L’E'F{J>'DE

demnoz106_blink_ram [Embedded debug launch] Debugger Process (9/9/05 12:35 AM)

(gdl) load L]

{zection=".text",section-sSize="1208", total-sige="2515"}
{section=".data",section-size="24" total-size="2515"}

[gdh) /N
N

[1 (| Launching: {70%:) 11 e

When downloading completes, the Debugger is in “idle” mode with the executable code
loaded into RAM.

& Debug - main.c - Eclipse SDK

File Edit Refackor Mavigate Search Project Run Window Help
Iff-HOIB % -0-Q- |&®¢ |4 -5 oo H Bocr [Fobg 2
m = B ||t9= varishles 52 Breakpoints|Expressi0ns| 2k B | 5 R & ¥ =0
O (] = ;R i S e -
=43, OCORemate [Pragram]
----;E Chovawimusrilocalibinyocdremate exe
=g demaoz106_blink_rarm [Embedded debug launch]
E&? Embedded GDE (979005 12:38 AM) {Suspended)
: E---m‘iﬂ Thread [0] {Suspended)
: f—— ol is no >
f- .E Debugger Process (2905 12:38 AM)
[h] lpczi0x.h ||_@. rinakefile (@ main.c &5 = 8 || outline (Disassembly 23 =08
int mwain (void)] | B Ox7iffeZdc streq ra, [r0,
Ox7£££fe250 zstnwada ra, {rz,
unsigned int iz S840 Ox7fffez54 ldrleb rd, [Eilz
static int a,b,c: // static un Ox7fffe258 subvss rz, ro,
static char d; ff static un Ox7fffe2Sc streq ra, [0,
static int w = 1; ff static in | Ox7fffezfl stmvada rd, {rz,
static long x = 5; J4 static initias Ox7fffez64 ldrleh rd, [rilz
static char v = 0Ox04; // static in Ox7fffez6s ldwvsia ro, {r0,
static int z = 7; ff static in Ox7fffe2dc andnv rZz, ro,
const char *pText = "The Rain in Spain®™: Ox7E££fe2?70 andcs pc, k0O,
Ox7££fe274 andnv r2, 0,
/4 Initialize the svystem Ox7fffez78 andes po, r5,
Initialize(): Ox7fffe27c stcone 0, cra,
Ox7fffezs0 ldezl o, cris,
/4 set io pins for led PO.7 Ox7fffez284 lde2l 0, cris,
IODIE |= 0x00000050; A4 pin PO.7 i= an output, everything Ox7££fe258 cmpos re, k0O,
IO3IET = 0Ox00000080; ff led off Ox7fffez8c andnv ri, ro,
IoCLE = 0Ox00000080; ff led on Ox7E££fe290 stcne 14, ecriE
bl Nw7FFfA294 andrw 1. vn. ¥
< | > 4 | *>

El consale 1 Tasks | Memory |

B % |Gl B -r5-78

demoZ 106 _blink_ram [Embedded debug launch] Debugger Process (99,

i05 12135 AM)

(gdbh) target remote localhost:35888
(gl load

ferclo)

{gection=".text",section-size="12053", total-size="2515"}
{gection=".data",section-size="24", cotal-size="2515"}

You can see above in the “console” view that the debugger executed our two commands
specified in the launch configuration earlier. It followed that with the download of the .text

and .data sections.

The downloading can be a little slow. You may want to experiment with a faster speed

setting for the Olimex wiggler.

The debugger is “idle”, waiting for you to issue a command.

G.

Run to Main

The first move is to start the application. It will stop at the main() program; we specified this
earlier in our launch configuration setup.

In the Debug view, click on the green arrow to start execution of the application..

=0

[petua x
(nb) W T %

¢

| = =

S T

EI Q OCDRemoke [Program]

: ;E CHowawintusrlocal\bintocdremote . exe

¢ demoz106_blink_ram [Embedded debug launch]

=- @ Embedded GDE (2/9/05 12:35 AM) (Suspended)
== g Thread [0] (Suspended)

H ? ----- = 1 =symbaol is not available =

------ DE Debugger Process (99705 12:35 AM)

The application will start, run all of our ARM initialization code and stop at the start of

main(). Note that in the Debug view, the Thread[0] is suspended at line 46 of main. With
embedded cross development, we only have one execution thread. Code targeted for the
PC platform can have multiple threads of execution.

& Debug - main.c - Eclipse SDK

Run to Main()
stopped here

File Edit Refactor Mavigate Search Project Run Window Help
Ie-Hel@/$-0-a- 8848 -5 -ve-o- B R (oo >
m = O || 9= varishles 2 Breakpoints|Expressions| ol | &% W~ —0O
13 I e S-S e - g = | = 4260351 ~
= Q OCDRemote [Pragram] ::;z E z g
% CHhcygwintusrilocalibin ocdremote, exe =0
demoz 106_blink_ram [Embedded debug launch]
& Embedded GDE (3/9/05 12138 AM) (Suspended) 9=d = B
=" D:IQ Thread [0] (Suspended) 9= =
Bl | maind) at main.c:46 H ‘f?zx:s b
------ % Debugger Process (9)9/05 12:38 AM)
[A] pez10:.h ||_@ makefile (@ main.c 4 = O ||outline (Disassembly &2 =0
int main (void) { L int main (void) { i~
0x40000274 <main>: mov riz,
unsigned int i: F8L 0x40000278 <main+ds: stmdb sp!,
static int a b, o} ff static un 0x4000027c <wmaintSs: sub rii,
static char d: Ff static un 0x40000280 <main+lZ>: sub ap, —
static int wo= 1; // static in
static long x = 5; /¢ static initis unsigned int i:
static char w = 0x04: Ff static in static int a,b,c:
static int z = 7; // static in static char d:
'3 const char *pText = "The Rain in 3pain®™; static int w o= 1;
static long x = 5;
/¢ Initialize the system static char v = Ox04;
Initializel(); static int z = 7:
const char *pText = "The
/4 set io pins for led PO.7 » Ox40000254 <main+lié>: 1ldr r3,
IODIR |= 0Ox00000080; J¢ pin PO.7 is an output, everything O0x400002588 <main+zZ0>: sStr ri,
ICSET = 0Ox00000080; J// led off
IOCLE = Ox00000080; /¢ led an e /¢ Initialize the system Z
< > < I >
& consale 52 Tasks|Memory| % | Exe 5E| = EB-rf-=0
demoz 106 _blink_ram [Embedded debug launch] Debugger Process (9/9f05 12:38 AM)
[gdb) target remote localhost:S58585
[gdb) load
{section=".text",section-size="1205",cotal-size="2515"}
{zection=".data",section-size="24" total-size="2515"}
(gcb)
E

H. Components of the DEBUG Perspective

Before operating the Eclipse debugger, let’s review the components of the Debug
perspective.

& Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Run B
i = m [%-0-Q- |&& 5 | f Rl B | #50ebug [(5Resource »
%Debug & i3 x ‘{9“ T i+ ¥ =08 Mreakpuints Expressions | Modules | Registers | Signals £ +k [g" & Sﬁ ¥ =0
=13, OCDRemote [Program] = j = 4260351 ~
g Cileygwiniusrilocal\bintocdremote exe 0= o -
=5 demoz106_blink_ram [Embedded debug launch] ()= b=0 Varlable dlsplay
|- % Embedded GDE (9/10/05 1:10 PM) (Suspended) Debug (= c=0 k .
=g Thread [0] {Suspended) C t |)=d=. Brea pOIﬂt Summary L
= 1 main{) at main.c:48 ontro Gz w=1 o 0
g Debugger Process (9/10/05 1:09 PM) = x=5 Reglster dlsplay, etC 3
[€] Ipc210x.h | @ makefile [main.c &2 = O || outline Disassembly Py =8
S R R AR R R R A A A AR A A AR A AR AR E A AR ARE A A ART R T RGN ~ int main (void) { -
Function declarations Ox40000274 <main>: mon rilz, =sp
A AR R AR AR AR AR AR AR A AR AR AR AR A AR ARRAAARTAARARA ARG RAAT W] Ox40000278 <maintds: stmdh sp!, {rill, riz, 1r, pc
0x4000027c <main+ds: sub ril, riz, #4 ; Ox4
Ox40000280 <main+l2z: sub sp, sp, #8 : Ox8
roid feed(void);
unsigned int 3
rvoid IRQ Routine (void) _ attribute_ (iinterrupt("IRQ"))]): static int al 4
void FIQ Routine (void) _ attribute_ [{interrupt("FIQM"))]); static char =1 Assembler
void SWI_Routine [void) __actribuce_ [(interrupt("SUIT))): static int W D I
void UNDEF Routine (woid) _ attribute {{interrupt ("UNDEF")]): static long x = 5 |Sp ay Iy
static char |
PR L e static int z
Header files const char *pText = "The Rain in Spain®;
R o o ol ol . ’DXQDDDDZEQ <main+l6ez>: 1dr r3’ [pc, #196] : Ox4a0c
#include "LPCZ10x.h™ C COde Dlsplay Ox40000288 <main+20>: str r3, [rill, #-1§]
// Initialize the system
/"%‘ﬂ‘ﬂ‘Tﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁ‘ﬂ‘ﬂ‘Tﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁ*ﬁ**t**ﬁ*ﬁ**f**ﬁ*ﬁ**f Initialize():
Global Variables 0x4000028c <main+z24s>: bl 0x40000354 <Initcialize
%‘ﬂ‘ﬂ‘Tﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁ‘ﬂ‘ﬂ‘Tﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁﬂ‘%‘ﬂ‘ﬂ‘ﬁ‘ﬂ‘ﬂ‘ﬁﬂ‘%‘ﬂ‘ﬂ‘Tﬂ‘ﬂ‘ﬁ*ﬁ**f*ﬁ**t**f*ﬁ**t**ﬁﬁf
int o: /4 global uninitialized wvariable /4 set io pinz for led PO.7
int r; /¢ global uninitialized wvarishle ISODIR | = 0x00000080; /¢ pin PO.7 iz an outpr
int EH /¢ global uninitialized wvarisble 0x40000250 <main+Z&>: mov rZ, #-536870904 HENS
v 0x40000294 <main+3i>: add rz, rZ, #163840 ;v
&) 2 & | >
Console Tasks | Memary =N (ma = =
B conscle 52 _Tasks Bl E-r5-°8
demoz2106_blink_ram [Embedded debug launch] Debugger Process (9/10/05 1:09 PM)
TQLOT [T =
{section=".text",section-size="1208", total-size="2515"} —
{zection=".text",section-sent="636",section-size="1208", total-sent="636", total-size="2515"}
{zection=".text",section-sent="1208", section-=ize="1208", cotal-sent="1208", total-=ize="2515"} GDB Debugger
{section=".data",ssection-size="z4", total-size="2515"; Command WlndOW B
(gdb] v

l. Debug Control

The Debug view should be on display at all times. It has the Run, Stop and Step buttons.
The tree-structured display shows what is running; in this case it's the OCDRemote utility
and our application, shown as Thread[0].

Run-to-Main() and
Continue Button.

Stop Button

Clear Button

Erases debug

[Debug % W

El q OCDRemote [Program]

view after Kill
Kill Button :
This stops Switch between C-
everything language stepping
and assembler
stepping
P il Cricygwiniusrilocalibiniocdremate. exe
E- G demoz 106_hlink_ram [Erbedded debug launch]
El @ Embedded GDE (2/10/05 1:20 PM) (Suspended)
LB off Thread [0] (Suspended)
: =01 maing) at main.cidé
------ % Debugoer F'ru:u:ess (9/10/05 1:20 PM)
Step Step Step
Into Over Out

Tree-view shows
what’s running.

Notes: When you resume execution by clicking on the Run/Continue button, many of
the buttons are “grayed out.” Click on “Thread[0]” to highlight it and the buttons
will re-appear. This is due to the possibility of multiple threads running
simultaneously and you must choose which thread to pause or step. In our ARM

development system, we only have one thread.

All of these views, such as the Debug Control view above,
can be maximized to full-screen, minimized or returned to
multi-pane by the “maximize” and “minimize” buttons at the

upper right corner.

<o)

J. Run and Stop with the Right-Click Menu

The easiest method of running is to employ the right-click menu. In the example below, the
blue arrowhead cursor indicates where the program is currently stopped.

To go to the IOCLR = 0x00000080; statement several lines away, click on the line where
you want to go (this should highlight the line and place the cursor there).

Now right click on that line. Notice that the rather large pop-up menu has a “Run to

Line” option.

We were stopped here.

[£] lpc210:x.h | | makefile I:m
static int w o= 1;
=tatic long x = 5;
=tatic char v = 0x04;
static int Zz = 7;
= const char *pText = "The Falin in 3pain

\ 4

/¢f Initialize the system
Initialize():

/f =Zet io pins for led PO.7

IODIR |= 0x00000080; // pin PD.7 iz an o
IOSET = 0x00000080; // led off
» |focLR = 0x00O000EO0; // led on

/¢ endless loop to toggle the red LED PO.7Y
while (1) {

= 0O
< Unda Chrl+Z
Revert File B
A Right-click next to bring
Cut up this pop-up menu
Copy Zhrl+C
Paste ChrlH4
Shift, Right 3
shift Left E
Cormment Chrl+) I
Uncormment el re
Add Block Coniment Ckrl+Shifk+)
Remove Block Comment Ztrl+3hift+y,
Conkent Assist Ztrl+3pace
Add Inchude Zkrl+Shift+1
Format Ctrl+shift+F

Shaw in CfC++ Projects

Refactar

Click on this for (i = 0; 3 < 5000000; 4+): iy
|. f t IOZET = 0x00000080; £
Ine Trst. for (j = 0; 3 < 5000000; j++ J: iy
IOCLE = Ox00000080; £
i
i

£ 1]

El console 52 Tasks‘Memory‘ (_

dermnz106_hlink_rarm [Ermbedded debug launch] Debugger Process (9;1@?@

Open Declaration
Qpen Definition

G0 ko next member
G0 ko previous memb
All Declarations

All References

C

Click on “Run to line”
to execute to the
clicked line.

Zkrl+Shift+Dovn
Chrl+shift+Up

[

3_Resume Ak Line
3{3"' Add Watch Expression...
Run &s
Debug As
Team
Compare Wikth
Replace With

- v v v r

Preferences. ..

{gection=".text",section-sent="315",2ection-size=
{gsection=".text",section-sent="636", section-size=
{gection=".text", section-sent="1208",section-size
{gection=".data",section-size="Z4", total-size="2Z5
{odia)

i

139 Sec 1 139171 Ak 1" Ln 3 ol 62 REC TRE E

BT Ty

Btart

Ln_l ARM Cross Developrm, ..

Create Make Target. ..
Build Make Target...

FrZ515!
="2515I
ge="rz5:

‘Writahle

When you click on the “Run to line” choice, the program will execute to the line the cursor
resides on and then stop (N.B. it will not execute the line).

You can right-click the “Resume at Line” choice to continue execution from that point. If
there are no other breakpoints set, then the Blink application will start blinking continuously.

i = o
[£] lpc210%.h | | & makefile m 8

static int w o= 1: A/ static initialized warisble A
static long = = 5; ff static initialized wariabhle
static char v o= 0x04; ff =static initialized wvariable
static int z = 7; A4 =2tatic initialized wariable
const char *pText = "The Bain in 3pain™:

f4 Initialize the system
Initialize():

f4 =zet io pins for led PO.7Y

ICDIR | = 0x000000s0; A4 pin PO.7 iz an output, everything else iz input afte
IOIET = 0Ox00000080; £f led off
4 IOCLE = Ox00000o0s0; £ led aon < We Stopped here

Note: this line WAS

f4 endless loop to toggle the red LED FO.Y

while (1] { NOT executed!
for (j = 0; j < S000000; j++): Af wait 500 msec
ICSET = 0x00000080; /¢ red led off
for (j = 0; j < S000000; j++): Af wait 500 msec
IOCLE = 0x00000080; S red led on

[«

|A
w

K. Setting a Breakpoint

Setting a breakpoint is very simple; just double-click on the far left edge of the line. Double-
clicking on the same spot will remove it.

for (3 = 0: j < 5000000; 34+ 1: Afowait 500 msec
A IOAET = OxO00000050; ff red led off

for (j = 0; j < 5000000; j++ 1: J/ wait 500 msec

IDCLE = 0x000000s0; S red led on

Click in the left margin area to
set/clear breakpoints.

Now click on the “Run/Continue” button in the Debug view. DF.

Assuming that this is the only breakpoint set, the program will execute to the breakpoint line

and stop.

[£] Ipeziox.h ||_@. makeFile (EI main.c &5 =8
static int z = 7; /4 static initialized wvariable A
const char *pText = "The Rain in Spain®™:

Y Initialize the system

Initialize():

ff =et io pins for led FO.7

ICDIER | = 0Ox00000080; A4 pin PO.7 i=2 an output, everything else iz input afte
IOSET = 0Ox00000080; J4 led off

IQCLE = 0x00000030; J4 led on =

£ endless loop to toggle the red LED PO.7
while (1) |

for (3j = 0; j < 5000000; j++): // wait 500 msec Stops pefor(?
S IOSET = 0x00000080; // red led off < executing this

for (j = 0; j < 5000000; 4+): /¢ wait 500 msec line.

IOCLE = 0Ox00000080; /¢ red led on

lfﬂ'?fﬂ'ﬁﬂ'ﬁﬂ'?fﬂ'#ﬁ#ﬁwﬁwﬁwﬁwﬁ#ﬁwﬁwﬁwﬁ*ﬁ*ﬁﬂ'?fﬁ#ﬁ#ﬁwﬁwﬁ#ﬁwﬁwﬁwﬁwﬁ#ﬁwﬁ

£

|

4

Since this is a RAM application and breakpoints are “software” breakpoints, there can be a

nearly unlimited number of breakpoints set.

The breakpoints can be more complex. For example, to ignore the
% symbol

breakpoint 5 times and then stop, right-click on the breakpoint
on the far left.

This brings up the pop-up menu below and click on “Breakpoint Properties ...".

L for {j = 0; j < 5000000; 4+):

Toggle Breakpaink

aooo; g4+)
Disahle Breakpoink d)

Breakpoint Properties. .

Run As
Debug As
Team
Zompare With
Replace With

- v v v

FHEEFTEFTEIFETE AN

Add Bookmark...
Add Task, ., et

w Show Quick Diff Chrl-3hift+0

In the “Properties for C/C++ breakpoint” window, set the Ignore Count to 5. This means
that the debugger will ignore the first five times it encounters the breakpoint and then stop.

& Properties for C/IC++ breakpoint

Common L= = IR

i+ Cammon
" Filtering

Tvpe: CJC++ line breakpoint

File: C:eclipseiworkspaceidemoz10&_blink_ramimain.c
Line number: &1

¥ Enabled

Condition: |

Ignore counk: | =1

oK I Cancel

To test this setup, we must terminate and re-launch the debugger.

* Debug - main.c - Eclipse SDK

File Edit FRefactor MNavigate Search Project Run o BpEE
1C5-EH & | & waﬂv@lae& | By - & -0 @
%5 Debug B2 (DF') (E) (H}{? | B

IJ {% DCDFLemn:ute [F'rcngram]
o ..lﬂ C:howgwintuselocalibinhocdremote, exe
=g demozl106_blink_ram [Embedded debug launch]
L:Jﬁ Ernbedded GDE (9710005 4:06 PM) {Suspended)
EI---|;|;|"EI Threau:l [0] (suspended; Breakpoint hik,)
= 1 main() at main.c:61
------ .E Debugger Process (9/10/05 4:06 PM)

4

Get used to this sequence: . — | Kills both the OCDRemote and the debugger

- ==

5% Erases the terminated processes in the tree
S

% —»| Start the OCDRemote; keep trying until it starts
properly.

Launch the debugger and download the
ﬁ* > application

D.—P Start and run to main()

Now when you hit the Run/Continue button again, the program will blink 5 times and stop.
Don’t expect this feature to run in real-time. Each time the breakpoint is encountered the
debugger will automatically continue until the “ignore” count is reached. This involves quite
a bit of debugger communication at a very slow baud rate.

In addition to specifying a “ignore” count, the breakpoint can be made conditional on an
expression. The general idea is that you set a breakpoint and then specify a conditional
expression that must be met before the debugger will stop on the specified source line.

In this example, a line has been added to the blink loop that increments a variable “x”.
Double-click on that line to set a breakpoint.
@ lpcz10x.h | makefile M =08

S
int mwain (void) {

unsigned int i: /¢ loop counter (stack wariable)
static int a,b,c /¢ static uninitialized wvariables
static char d; /¢ static uninitialized wvarisbles
static int v o= 1; /¢ static initialized wvarisble
static long = = 5; // static initialized wvariabhle
static char vy = 0Ox04; /¢ static initialized warishle
static int z = 7 /¢ static initialized warishle
> const char *pText = "The Rain in 3pain®:
/4 Initialize the system
Initialize|):
/f sZet io pins for led PO.7
ICDIE | = Ox000000s80; f4 pin PO.7 is an output, everything else is input after reset
IOCSET = 0Ox00000080; ff led off
IOCLE = 0Ox00000080; £/ led on
/4 endless loop to toggle the red LED PO.7T
while (1) {
for (j = 0:; j < 50000007 j++): J4 wait 500 msec
IO3ET = Ox000000850; Sf red led off
for (j = 0:; j < BO00000; j++): S4 wait 500 msec
IOCLE = Ox00000050; ff red led on

| Le KH+:

| €

Right click on the breakpoint symbol and select “Breakpoint Properties”. In the Breakpoint
Properties window, set the condition text box to “x == 9",

£ Properties for C/C++ breakpoint

| byvpe filker kext ﬂ Common

Cammaon

Filkering Type: CfC4++ line breakpoint

File: Ciieclipseiworkspaceldemoz 106_blink_ramimain.c
Line number: &4
[+ Enabled

Condition: | == 9|

Ignore count: | 0

0k | Cancel |

A nice feature of Eclipse debugging is that you can edit the source file within the debugger
and rebuild the application without leaving the debugger. Of course, you need to kill the
OCDRemote and the Debugger and restart the download after the build; as specified

above. This is necessary for this release of CDT because the “Restart” button appears
inoperative. The advantage is that you don’t have to change the Eclipse perspective — just
stay in the Debug perspective.

Start the application and it will stop on the breakpoint line (this will take a long time, 9
seconds on my Dell computer). If you park the cursor over the variable x after the program
has suspended on the breakpoint, it will display that the current value is 9.

J4 endlesz= loop to toggle the red LED PO.7T
while (1) {

for (j = 0; j < 5000000; j++): ¢ wait 500 msec
IOSET = Ox00000080; /4 red led off
for (j = 0; j < 5000000; j++): A4 wait 500 msec
IOCLE = Ox00000080; /¢ red led on
a W+
3 :<='EI \ Debugger stopped on
) this line only when x ==

If you specify that it should break when x == 50000, you will essentially wait forever. The
way this works, the debugger breaks on the selected source line every pass through that
source line and then queries via JTAG for the current value of the variable x. When
x==50000, the debugger will stop. Obviously, that requires a lot of serial communication at
a very slow baud rate. Still, you may find some use for this feature.

In the Breakpoint Summary view, shown directly below, you can see all the breakpoints you
have created and the right-click menu lets you change the properties, remove or disable
any of the breakpoints, etc. The example below shows one conditional breakpoint that will
stop on source line 64 only if the variable x is equal to 9.

Variables | ®g Breakpoints &2 Expressions | Modules | Registers | Signals = O

R ER=-S
3;; Ceclipselworkspacetdemoz 106_blink_ramimain.c [ling: 64] if x ==

L. Single Stepping

Single-stepping is the single most useful feature in any debugging environment. The debug
view has three buttons to support this.

S =

StepInto Step Over Step Out Of

Step Into
If the cursor is at a function call, this will step into the function.
It will stop at the first instruction inside the function.
If cursor is on any other line, this will execute one instruction.
- s
Step Over

If the cursor is at a function call, this will step over the function. It will

execute the entire function and stop on the next instruction after the
function call.
-

If cursor is on any other line, this will execute one instruction

Step Out Of

If the cursor is within a function, this will execute the remaining
instructions in the function and stop on the next instruction after the
function call.

-

This button will be “grayed-out” if cursor is not within a function.

As a simple example, restart the debugger and set a breakpoint on a line in the Initialize()
function. Hit the Start button to go to that breakpoint.

(] lpc210:.h | | & makefile m\ =8

/¢4 Wair for the PLL to lock to =set frequency
while ' (PLLSTAT & PLOCEK)] ;:

|>

/f Connect the FLL as the clock source

% PLLCON=0x3; < Set a breakpoint here.

feed():

// Ensbling MiM and setting nunber of clocks used for Flash wemory fetch (4 coclks in this o
MAMCR=0x2;
MAMTIM=0x4;

Click the “Step Over” button -%’ The debugger will execute one instruction.

(] Ipcz10x.h | | @ makefile (@ main.c & =08

4/ Wait for the PLL to lock to sSet frecquency
while (' (PLLSTAT & PLOCK]] ;

>

J{ Connect the PLL as the clock source

PLLCON=0x3;

feea)s |

J¢ Enabling MAM and setting nunber of clocks used for Flash wewory fetch (4 colks in this c

MAMCR=0xZ;
MAMTIM=0x4;

* 3

e

Click the “Step Into” button The debugger will enter the feed() function.

void feed(rvoid)

i
» PLLFEED=0xAA4:
PLLFEED=0xE5;

i

| £

< |

|

Notice that the “Step Out Of” button is illuminated. Click the “Step Out Of” button
The debugger will execute the remaining instructions in feed() and return to just after the
function call.

J/f Connect the PLL a= the clock source
] PLLCON=0x3;
feedi) ;

J¢ Enabling MAM and setting nunker of clocks used for Flash wewory fetch (4 colks in this c
» MAMCR=0x2Z ;
MAMTIM=0x4;

M. Inspecting and Modifying Variables

Before proceeding on this topic, let's add a couple of structured variables to the simple
blinker test program. After rebuilding the application and re-launching the debugger, we can
inspect variables once a breakpoint has been encountered.

S R A R A A R R R A A R A R AR A A R RN A A A A AR A AN AT AR N AN AAELRARD LA

Function declarations
e o ol ol el e e e e i o o o o ol o o o o ﬁl.f'

roid Initialize (void):

rvoid feedivoid) ;

roid IRQ Routine (woid) _ attribute ((interrupt ("IRQ"))]
void FIQ Foutine (woid) _ attribute_ (i(interrupt ("FIQ")));
roid SUI_Foutine (woid) _ attribute_ (i(interrupt ("3IWIT)));
roid UNDEF_ Routine (veoid) _ attribute | (interrupt ("UNDEF"™))):

l.."1‘1‘ﬂ'ﬂ'ﬁ'*tt*ﬂ'ﬂ'ﬂ'**t**ﬂ'tt*tt*ﬂ'ﬂ'ﬂ'**t**ﬂ'ﬂ'ﬁ'*tt***tt*t***tt*tt***tt
Header files

A R R R A R R R N A R A AR R RN AR A A A AR AR AN A ARSI AATTRRARR LA

#include "LPCZ10x.h™

PR R R E L b s s e i sl

GFlokbhal Variables
1‘1‘ﬂ'ﬂ'ﬂ'*tt*ﬂ'ﬂ'ﬂ'?\'*t**ﬂ'ﬂ't*tt*ﬂ'ﬂ'ﬂ'?\'*t**ﬂ'ﬂ't*tt***tt*t**ﬂ'tt*tt**ﬂ'ttf

int =5 S4 global uninitialized varisble
int r: F4 global uninitialized wvariable
int =2 Sf global uninitialized warisble
short h = Z; /4 global initialized wariable
short i = 3: ¢4 global initialized variable
char i = 6: A/ global initialized wariable

struct commns {

int nhytes:
char* pEBuf;
char buffer[32]:

} channel

15,

&Lchannel .buffer[0] ,

{"Faster than a speeding bullec™}}:

MATH

L R e e s e e

int main (void)]

unsigned int i: fF loop counter (stack variable)
static int a,b, o F¢ static uninitialized wariables
static char d: S4 static uninitialized wvariasbles
static int w 1: fF static initialized warisble
static long x = 5; S/ static initialized wariable
static char v = 0x04; Fd static initialized wvariable
static int z = 7: fF static initialized warisble
const char *pText = "The Rain in Spain®:
struct EntryLock {

Jong kevy:

int niccesses:

char name [16]
} howess = {14705, 0O, "Spiderman'™):
A4 Initiamlize the svystem
Initialize():
S/ set io pin=s for led PO.7
IODIR | = 0x00000080; £ pin PO.7 i= an output, everything else i=s input after reset
ICOSET = 0Ox00000050; £f led off
IOCLE = O=x00000030 4 led on

| /¢ endless loop to toggle the red LED FPO.7

while (1) {

for (j = 0; 3 < 5000000; j++): 4 wait 500 msec

ICIET = 0x00000030; /¢4 red led off

for (j = 0; 3 < 5000000; j++): 4 wait 500 msec

ICCLE = O0x00000030; /4 red led on

X = ® + 1:

The simple way to inspect variables is to just park the cursor over the variable name in the
source window; the current value will pop up in a tiny text box. Execution must be stopped
for this to work; either by breakpoint or pause.

Text cursor is
_ k h
static char ¥ M \r/)zlrria%?e%grt ©
static int z =

7
const char :=7¢t = "The Rain in Spain®;
struct EntryLock |
long key:
int niccesses;
char hame[16] :

¥ Access = {14705, 0, "Spiderman®™::

For a structured variable, parking the cursor over the variable name will show the values of
all the internal component parts.

HLdL L1y viLdr R B Y 3 s ShdlLlls LIllLldllasEld widl LA LE
static int z = 7 A4 static initialized wariable
const char *pText = "The Bain in Spain™;
Text cursor is
struct EntrvLock | parked over the
long kev:

variable “Access”

int niccesses:

char aane [16]
} Ac&ﬁss = {14705, 0, "Ipiderman®™}:
|F'.|:|:ess = {key = 14705, nAccesses = 0, name = “Spiderman‘-.,l]l]l]‘-.,l]l]l]‘-.,l]l]l]‘-.,l]l]l]‘-.,l]l]l]‘-.,d
S¢ Initialize the syatem
Initializel():

A4 =et io pins for led PO.Y
IODIE | = O0=x00000030; S pin PO.7 iz an output, everything else is input after rese

Another way to look at the local variables is to inspect the “Variables” view. This will
automatically display all automatic variables in the current stack frame. It can also display
any global variables that you choose. For simple scalar variables, the value is printed next
to the variable name.

If you click on a variable, its value appears in the summary area at the bottom. This is
handy for a structured variable or a pointer; wherein the debugger will expand the variable
in the summary area.

p
)= Variables B3 Brealq:uoints|E><|:uressiu:uns|Modules|Registers|5ignals‘ £ =+ | Sr % % ¥ =0

..... - b=0 Click on this

[+ pText = Ox400004F4
Eﬂ---[g Access

The summary area will
0x400004f4 "The Rain in Spain® < show what the pointer is
referencing.

The Variables view can also expand structures. Just click on any “+” signs you see to
expand the structure and view its contents.

Mreakpuints|Expressiu:uns|Mu:udules|Registers|5ignals| Ej =k | E"‘ xX % ¥ =0

= j = 5000000

o —
I
oo o

¥ £ on o
T

You can click on “+” signs
y=. to expand a structure
z=7 variable and view its

pText = 0x400004F4
- Access contents.

s key = 14705
I,’x]: nfccesses =
== name
----- 9= name[0] ='5'
----- ()= name[1] ="p'
----- (9= name[2] =

----- 9= name[3] ="d"
----- (9= name[4] ="¢'
-----)= name[5] ="'
-----)= name[5] = 'm'
----- 9= name[7] ="a"
----- 9= name[8] ="'
-----)= name[3] = .

----- 9= name[10] = .
----- (9= nam=[11] =,
----- (9= name[12] =,
----- ()= name[13]
----- (9= name[14]
----- (9= nams[15] = .

I
oo -

+3323223%3

{key = 14705, nlccesses = 0, name = "Spiderman’ 000%000%000%000% 000%000™}

If you click on the “Show Type Names” button, :_t_:_

displayed with its type, as shown below.

each variable name will be

m\ﬁreakpuints | Expressions | Reqgisters | = B

GEEIGE L

..... [x}: ||-It a= |:|

..... (x}: ||-||: |:| = |:|

..... [X:.: "-lt C= |:|

----- (%)= chard=.

..... (x}: ||-||: W= 1

----- (9= longint x =5
..... ()= char v =,

----- ()=intz=7

----- (9= unsigned ink j = 3301707

[+--wp char * pText = 0x400004F4
[3---[3 struck EntrvLock Access

Global variables have to be individually selected for display within the “Variables” view.

Use the “Add Global Variables” button

e
.

to open the selection dialog.

Check the variables you want to display and then click “OK” add them to the Variables

view,

£ Selection Needed

Select Yariables:

O
O4d
O
Oc.oi133
[h

[

i

Osd

[¥] channel
O:z.1119
Ov.1118
Oxa117
Ow.t11s
O
Faq

[

[l s

Select All | Deselect.ﬂ.lll

| >

Note: not sure what
the extra variables
are. Might be a CDT
bug?

[

[]

Cancel |

d

p ———

You can easily change the value of a variable at any time. Assuming that the debugger has
stopped, click on the variable you wish to change and right click. In the right-click menu,
select “Change Value...” and enter the new value into the pop-up window as shown below.
In this example, we change the variable “c” to 52.

=
i Mreakpuints ‘ Expressions ‘ Modules ‘ Reqisters | Signal
..... (9= j = 3301707
----- #=a=0
..... (=b=0
..... (9= m
_____ t9=d=. Select al Chrl+4
----- = =1 =| Copy Variables ChrH-C
""" (= =5 [Enable
..... (= v =
[] Disatle
u}
*[] Display s Arrayw. ..
@y Cast To Type... & Sat Value
Restore Criginal Type

Enker a new value for c:

Find Yatiable. .. CheHF

% change Yalue. .. 52l

g"" Add Global variables. .

® Remove Global Yariables
& Remove All Global Yariables

Farmat
0K I Cancel

ZC?' Watch

Now the “Variables” view should show the new value for the variable “c”. Note that it has
been colored red to indicate that it has been changed.

Mreakpuints Expressions | M

4 'woog!

N. Watch Expressions

The “Expressions” view can display the results of expressions (any legal C Language
expression). Since it can pick any local or global variable, it forms the basis of a
customizable variable display; showing only the information you want.

For example, to display the 6™ character of the name in the structured variable “Access”,
bring up the right-click menu and select “Add Watch Expression...”.
2k_Resume At Line
X1¥ Add Watch Expression...

Run As >

Enter the fully qualified name of the 6™ character of the name][] array.

" Add Watch Expression

Expression to watch:

I Access.name[s]

Ik I Zancel |

Note that it now appears in the “Expressions” view.

- -
Wariables | Breakpoints PO SRR R Mu:u:lules|Regi5ters|5ignals| EI +h | E=3 % ¥ =0
- E%’l" "'=0 109 'm'
-2 “channel®

POEHY no__ 1
=7' "Access.name[6]" ='m

You can type in very complicated expressions. Here we defined the expression (i + z)/h

- ~,
Yariables | Breakpoints MRS R MDduIes|Registers|Signals| £I <k | 4 & ~ =0
T "g"=0 [
#-5Y "channel”

L OERY o v

g Access, name[6]" ='m

LI ikt =5

O. Assembly Language Debugging

The Debug perspective includes an Assembly Language view.

j=
If you click on the Instruction Stepping Mode toggle button in the Debug view, 1
the assembly language window becomes active and the single-step buttons apply to the
assembler window. The single-step buttons will advance the program by a single assembler
instruction. Note that the “Disassembly” tab lights up when the assembler view has control.

Note that the debugger is currently stopped at the assembler line at address 0x400003f0.

<

|

>

outline o x = H If
0x400003d8 <Initialize+76>: mow r3, r3, lsl #la ”~ we
Ox400003de: <Initialize+d0>: mow r3i, r3i, lsr #la
0x400003e0 «<Initialize+S84>: mowv r3, r3, lsr #10
O0x400003e4 <Initialize+d8»: and r3, £3, #1 s Ox1
0x400003e8 <Initialize+92>: cmp r3, #0O : 0Ox0
0x400003ee «<Initialized+26>: bedg 0=40000308 <Initislize+60>
// Connect the PLL as the clock source
PLLCON=0x3;
B 0x400003f0 <Initialize+100>: mow r3, #-53687091Z ; Oxe0000000
O0x400003£4 «<Initialize+l04>: add r3, r3, #2080768 ; OxifcOOO
O0x400003£5 <Initialize+l105>: add r3, £3, #12g ; 0xa80 —
0x400003fe <Initialize+l112>: mowv rZ, #H3 : 0Ox3
0x40000400 «<Initialize+ll6>: =trh r2, [r3]
feedl)
O0x40000404 <Initialize+l12Z0>: bl Ox40000454 <feed>

click the “Step Over” button in the Debug view, the debugger will execute one assembler

line.

Cukline Disassembly 3 = B8
0x400003d8 <Initialize+76>: wov r3, r3, l=1 #la o
O0x400003de <Initialize+S0>: mowv r3i, ri, lsr #1la
0x400003e0 <Initciglize+S84d>: wov r3, r3, lsr #10
O0x400003e4 <Initialize+S8>: and £3, r3, #1 ; Oxl
O0x400003e8 <Initialize+92>: cmp r3, #0 : Ox0
0x400003ec <Initigalized+96>: beqg 0=400003 28 «<Initialize+60>

/7 Connect the FLL as the clock source
PLLCON=0x3;

»20x400003£f0 <Initialize+100>: wow r3, #-536870921Zz : Oxe0000000

» 0x400003f4 <Initislize+104>: add £3, r3, #2080768 ; DxlchDD‘Zl
O0x400003f5 <Initialize+108>: add r3i, ri, #1z8 ; 0OxS80 . -
0x400003fc <Initigalize+ll12:>: mwowv rZ, #3 ; D=3
0x40000400 <Initialize+ll6=: strbh r2, [r3]

fead()
O0x40000404 <Initialize+l1Z0>: bl Ox40000454 <feed:>

4

|

The “Step Into” and “Step Out Of” buttons work in the same was as for C code.

|£

P.

Inspecting Registers

Unfortunately, parking the cursor over a register name (R3 e.g.) does not pop up its current
value. For that, you can refer to the “Registers” view.

(‘-.-'ariables | Breakpoints | Expressions | Modules Mignals |

-4 pain

L~ =0

Click on the “+” symbol next to Main and the registers will appear. The Philips LPC2106
doesn’t have any floating point registers so registers FO through FPS are not applicable.

-
Vatiable

5 | Breakpaoints | Expressions

Madules mignais

x

“I*Elzlvl:lﬁ"w

SR

Main

e ro=110

dim r1=0

it r2 = 85

1010 ¥3 = -534790004
e r4 = -536590658
105 = 7147482037
e re = 1073742120
bimi 7 =10

% ra = -1658272053
0 o = 1109953455
e ri0 =-2105601601
0 1) = (073805976
0 15 = 1073805964
1 op = 073505964
0 | = 073742656
0 e = 073742656
bim fO=0

e F1 =0

e F2=0

e F3 =0

i F4=0

it Fs =0

i fo =0

e F7 =0

12 fps = 0

8 cpsr = 83RGT1120

If you don’t like a particular register’s numeric format, you can click to highlight it and then
bring up the right-click menu.

The “Format” option permits you to change the numeric format to hexadecimal, for
example.

- Set Value

Enter a new walue For r7:

ox1Fa]

[a] 4 I Cancel |

Now the register display shows r4 in hexadecimal format.

- -
Variables | Breakpoints | Expressions | Modules [81al -l o e Signals

=& tain

----- 1 0= 110

..... win ey

----- 11 r2 = 85

..... 1o s

----- 1019 r4 = DwfFFFFFFFFe002c000
----- 180 ¢S = 2147482932
----- 1939 +6 = 1073742120
----- e 7 =0

----- 19 15 = -1658272053
----- o v = -1109953485

Of course, the right click menu lets you change the value of any register. For example, to
change r7 from zero to Ox1F8, just select the register, right-click and select “Change
Value...”

Y | %#Debug [[Rresource Egcice+ »
Signals| E'I?E ¥ =8

Yariables | Breakpoints | Expressions | = i Registers 3¢

=185 Main

288 Y0 = 110
mn =
Ly - g
A sy
A0 4 e fFFFFFRONZC000 e Enable
a8 S = 2147482932 D Disable

i r6 = 1073742120 ®[] Display &s &rray.,.

... 1o

a1o1
@
I8 v = -1658272053 0 Cast To Type...

308 19 = -1109953485 Restore Original Type

-8 r10 = -2105601601 Find ¥ariable. .. Chrl+F
38 111 = 1073805976 = Change Value. .

38 112 = 1073805964 -
-4 sp = 1073505964 Add Reagister Group

g I = 1073742792 Restore Defaulk Register Groups
a8 po o= 1073742832
g F0=0 Format 3

ey =)
g f2=10 Y watch
g F3=0

g F4=0

~gim Fa=0

Lm0 e =

m 7 o

i fps =10

A8 cpsr = 536871120

Now the value for r7 has been changed to Ox1F8.

E
Yariables | Breakpoints | Expressions | Modules ﬁ:ﬁ'?n" Registers &2 . Signals

|-y Main

----- 188 0= 110

----- 1 =0

----- 1l vz =85

----- i ra=1

----- 1018 v4 = OxfFFFFFFFFE002C000
----- 108 = 2147452932

---- 198 v& = 1073742120

----- 1010 v 7 = Ox1FS

----- 1 vd = -1658272053

It goes without saying that you had better use this feature with great care! Make sure you
know what you are doing before tampering with the ARM registers.

Q. Inspecting Memory

Viewing memory is a bit complex in Eclipse. First, the memory view is not part of the default
debug launch configuration. You can add it by clicking “Window — Show View — Memory”
as shown below.

L Run MH Help

J [3 E Mew indow - .

Mew Editor

. = %| ; i*v:ﬁw\.-'arie

. DpEn Perspective 4 1 |

Shona Wi » ant
] * n
aunch] Customize Perspective. .. ©g EBreakpoints Al+ShiFt+CQ, B g
iuspende Save Perspective As... El console Al+Shife+0, C e

Reset Perspective

Deb

Close Perspective ﬁ o
i Close &l Perspectives Disassembly

Mavigation 3 4 Display
— @ Etrar Log —

Preferences. .. 57

& Expressions

T R R
i Memaory

.Aarations

r************************1ﬂMDdUIES -lE
O— -
o= Sutline s
114 Reqgisters req

The memory view appears in the “Console” view at the bottom of the Debug perspective.
At this point, nothing has been defined. Memory is displayed as one or more “memory

monitors”. To create a memory monitor, click on the “+” symbol.

Enter the address 0x400004f4 (address of the string “The Rain in Spain”) in the dialog box.

Console

=

ri ot |6 @ &~ = 0O

emory Monitors dh),\\ <. Memory Renderings
-
~

& Monitor Memory

Enter address or expression to monitors

40000454

Ik I Cancel |

The memory monitor is created, although it defaults to 4-byte display mode. The display of
the address columns and the associated memory contents is called a “Rendering”.

The address 0x400004F4 is called the Base Address; there’s a right-click menu option
“Reset to Base Address” that will automatically return you to this address if you scroll the

memory display.

SN

Mermary Maonitors = 3 & IMemary Renderings g 3
i Qe400004F4 4000044 : 0:x400004F4 <Hes |
iddress |0 - 3 |a -7 |5 - B C-F ~
400004F0 00000000 546 20 S5261696E Z0696EZ0
40000500 53706169 sEO000OO ozoo0o300 0a000000
40000510 05000000 15050040 460617374 65722074
40000520 686l1gEZ0 61207370 65656469 GEs72062
40000530 TS5ECACES 74000000 a7ooaooo 04000000
40000540 05000000 01000000 aooooooo ooooooao
40000550 00000000 ooooooao aooooooo ooooooao
40000560 00000000 EQELIFF7F O3FE3FF7F OEQOOQOQO0
40000570 00000000 THECFF7F TEECFF7F BCO10040 B
40000550 00000000 EQELIFF7F O3FE3FF7F OEQOOOQO0
40000590 00000000 TSECFF7F TEECFF7F ECO10040
40000540 00000000 EQE1FF7F O3FE3FF7F OEQOOQOOO
400005B0 00000000 TGECFFV7F TSECFF7F BCO10040
400005Cc0 00000000 EQOELIFF7F O3E3FF7F OEQCOoa0
40000500 0O0o0ooooo TESECFF7F TEECFF7F ECO10040
ANMNANEFN [nininininininin FNAF1FFIF MNRIFIFFIR [N ninininininl Z

There’s also a “Go to Address...” right-click menu option that will jump all over memory for

you.

By right-clicking anywhere within the memory rendering (display area), you can select

“Column Size — 1 unit”.

Ses
o

Y ¢ venorr x N e [@[~ = O

emory Monitors = & Memory Renderings o %
% 0x400004F4 0x400004F4 ; 0x400004F4 <Hex |

hddress |0 - 3 |a - = |z - = cC-F A

400004F0 00000000 E20

Add Renderi

40000500 53706169 eEOOl EnaEnng noo

40000510 05000000 1505(¥ Remove Rendering 074

40000520 68616E20 6120 D62

40000530 756CECES 7annq W Reset to Base Address ooo

40000540 05000000 0100 Go ko Address... ooo

40000550 00000000 aooo

40000560 00000000 EQEL

2 units
40000570 00000000 TEEC Reformat v 4 units |
40000580 0O00000OOQ ECQEL Hide Address Column & units
40000520 Q0000000 T8EC 16 units

-
L Copy To Clipboard
40000540 00000000 — EOQE1] LS “OPp¥ P Set as DeFault

400005B0 00000000 78EC] &) print .
400005C0 00000000 EOEL 0oa
40000500 00000000 78EC Froperties 040

AOANNEFN [nininininininin] FAF1FF?E MNAFIFFIET [nanininininin]

This will repaint the memory rendering in Byte format.

(consols IR I, 09/ r2 [t B]G ~ = O

FuE

Memary Monitors & 3 & Memory Renderings g 3

e Ox400004F4 0400004F4 ; Ox400004F4 <Hes |

aadress [0 [1 [z |3 |a [5 |6 |7 |8 |5 [a |8 |c [p [E @&
aononaF0 oo oo oo oo I 68 65 20 52 61 63 6E 20 63 6E
40000500 53 70 61 69 6E 00 00 00 02 00 O3 00 0 00 00
40000510 05 00 00 OO0 18 05 00 40 46 61 73 74 65 72 20
40000520 68 61 6E 20 61 20 73 70 65 65 ©4 69 6E 57 20
40000530 75 6C 6C 65 74 00 00 00 07 00 00 00 04 00 00
40000540 05 00 00 0O 01 00 00 00 00 00 00 00 00 00 00
40000550 00 00 00 0O OO 00 0O 00 00 00 00 00 00 00 00
40000560 00 00 00 00 EO EL FF F 03 E3 FF 7F OE 00 00—
40000570 00 00 00 00 78 EC FF 7F 78 EC FF 7F BC 01 00
40000580 00 00 00 00 EO EL FF F 03 E3 FF 7F OE 00 00
40000590 00 00 00 00 78 EC FF 7F 78 EC FF 7F BC 01 00
4000050 00 00 OO0 OO ED E1 FF PF 03 E3 FF 7F OF 00 00
40000SB0 00 00 OO0 OO 78 EC FF PF 7% EC FF 7F BC 01 00
400005C0 00 00 OO0 OO E0 E1 FF 7F 03 E3 FF 7F OE 00 00

ANNNNETIN nn nn [min nn R i TE 7F R T FE A R™ A nr
< | B

|

Now we will add a second rendering that will display the memory monitor in ASCII.
Click on the “Toggle Split Pane” button to create a second rendering pane.
Pick “ASCII” display for the new rendering.

Click on the “Add Rendering(s)” button to create an additional ASCII memory display.

N\
e [T S ()
: :) =
Mmfﬂri g 3 & Memory Renderings g 3 Memory Renderings g 3
------ & Ox400004F4 0x400004F4 © 0x400004F4 <Hex > | Dx400004F4 <0x400004F4 = |
bddress | 0 | 1 | Z | 3 | 4 | S | & | S| | Memary Monikar: Dx400004f4 <0x400004F4 >
400004F0 00 00 00 00 54 B 65 Select rendering(s) ko create:
40000500 53 70 61 3= GtE oo [ulu} add Rendering(s)
40000510 05 oo oo oo 135 as [ulu} <
40000520 63 61 6E 20 61 20 73 igned Integer
Unsigned Integer

40000530 75 &C aic 65 74 00 00
40000540 05 00 OO0 0O 01 0O OO0
40000550 00 00 OO0 0O Q0 0O 00
40000560 00 0O Q00 00 ED E1 FF
40000570 00 00 Q00 00 WE EC FF
40000580 00 00 00 00 ED E1 FF
40000580 00 00 Q0 0O WE EC FF
4000050 OO0 0O OO0 00 EO E1 FF
40000560 OO0 00O Q00 0O Wd EC FF
400005C0 00 0o 00 00 ED E1 O FF

40AANSHA AN NN Nl AN 7R Fr FF
< i | b3

|«

Now we have a split pane display of the memory in hex and ASCII.

ot [T rie = a5~ =6
E:.Tirorr.f: = % & Memory Renderings 4 % Memoary Renderings = %
------ & Dx400004F4 0x400004F4 ; Dx400004F4 <Hex> | 04000044 ; Dc400004F4 <ASCIT> |
dddress |0 |1 |z |3 |4 |5 [& [l |address |0 |1 |z |5 |4 |5 |6 |7 |58 [
400004F0 00 00 00 00 68 65 400004F0 O O O O L e R
40000500 530 70 61 69 &E 0O OO0 40000500 % p & 4 n O O O O
40000510 05 OO0 00 00 18 05 00 40000510 O O O O O O O @ F
40000520 68 0961 6E 20 61 zO0 73 40000520 h & n a s p e
40000530 75 60 6C 65 74 00 00 40000530 w 1 1 e & O O O O
40000540 05 00 OO0 00 01 00 00 40000540 O O O O O O O O O
40000550 00 OO0 00 00 OO0 00 00 40000550 O O O O O O O O O |
40000560 OO0 OO0 00 00 0 EOD EL FF O — 40000560 O O O O & & % O O 9 —
40000570 00 OO0 OO0 00 278 EC FF 40000570 O O O O = i % O @ x
40000580 00 OO0 000 00 EOD E1 FF 40000580 O O O O & & % O O
40000590 00 OO0 OO0 00 78 EC FF 40000590 O O O O 9= i % O x
40000540 OO0 OO0 OO0 00 2 EOD E1 FF 40000540 O O O O & & ¢ O O
400005B0 OO0 OO0 OO0 00 78 EC FF 40000560 O O O O 9= i ¢ O x
400005C0 00 OO0 00 00 EOD E1 FF 4000050 O O O O & & % O O
ANONNETIN nn [ninl ﬂﬂl nn i i FE 3 X ANANNSETN n n rn n vl i i n v 3 !
11§ I1IT§

Click on the “Link Memory Rendering Panes” “3;5 button.

This means that scrolling one memory rendering will automatically scroll the other one in
synchronism.

Click on the “Toggle Memory Monitors Pane” |4} button.

This will expand the display erasing the “memory monitors” list on the left.

Console H Cilet | =5 ||EE|® ~ — O
IMemory Renderings da 3¢ Memory Renderings da %
Ox400004F4 ¢ Ox400004F4 <Hesxx] Ox400004F4 ¢ 0x400004F4 <ASCIL>]
sagress |o |1 |z s |2 [s e [7 [=8 || |scacess |o |1 |z |z |2 |5 |5 [7 |2 |2 |a |BE»
400004F0 00 00 0O OO 68 65 20 52 400004F0 O O O O h e R a i =n
40000500 53 70 61 63 6E 00 OO0 0O D02 40000500 S p a 1 mn O O O O O O O
40000510 05 00 00 00 18 05 00 40 46 40000510 O O O O O O O B F a s ¢
40000520 65 61 6E 20 61 20 73 70 65 40000520 h & n & s p e e a4 i
40000530 75 6C 6C 65 74 00 00 00 07 40000530 uw 1 1 e & O O O O O O O
40000540 05 00 00 OO0 01 00 00 00 00 40000540 O O O O O O O O O O O O
40000550 00 OO0 00 00 00 00 OO0 00 0o 40000550 O O O O O O O O O O O O
40000560 00 00 00 ©OO0 EO E1 FF 7F 03 — 40000560 O O O O & & O O & § O—
40000570 00 OO0 0O OO 78 EC FF 7F 78 40000570 O O O O x i % O x i ¥ O
40000580 00 00 00 OO0 EO E1 FF 7F 03 40000580 O O O O & & % O O & % O
40000590 00 OO0 00 00 78 EC FF 7F 78 40000590 O O O O x i % O x i % O
40000540 00 00 00 OO0 EO E1 FF 7F 03 40000540 O O O O & & % O O & § O
400005B0 00 OO0 0O OO 78 EC FF 7F 78 400005B0 O O O O = i % O x i ¥ O
400005C0 00 00 00 OO0 EO E1 FF 7F 03 400005C0 O O O O & & % O O & % O
ANMONNSTIN [nin] an (nin] nn "J‘Fll i FF aF i) 5 Z ANONNSTIN n n ! n W i i ! | w 3 ke >ﬂ :

Personally, I think this Eclipse memory display is a bit complex. However, it allows you to
define many “memory monitors” and clicking on any one of them pops up the renderings
instantly. It's like so many things in life, once you learn how to do it; it seems easy!

22 Debug the FLASH Project

Debugging an application configured for FLASH execution is not only possible, but fairly
easy. It's a two-step process; use the Philips LPC2000 Flash Utility to burn the
application into onboard FLASH memory and then run the Eclipse/GDB debugger to
control execution.

A. Hardware Setup

The following hardware setup is required.

Olimex ARM JTAG Adapter
(WIGGLER)

LPT1 |_ \|
m |_) Install the Debug
= j L JTAG jumper while

debugging FLASH

COM1

_.g | TN, '@t, &

; 18888 sk 2 Burza.ew [
il g A= als
oo [TTTTTIT — ah o Bilee
{0 =24 Fao il <
= =:E-|:|. J: +|[20-pin
Chdilhd aB o8 2 = o o 1
srmmzaz K W =[§] e o[JTAG
. .. "@; 8,5 ®® COPYRIGHICC) 2003 s o||Port
The BSL jumper is installed NoJ® @- . .c: szzzszzzzzal

O xxpoo@®C D@ DS @ e

while programming FLASH.

The BSL jumper istemoved | |$EEIEEEEEEE I I ELEE SRS
while debugging FLASH. S
@ A A Eans

The only thing to remember about the hardware setup is to fit the bootstrap loader jumper
(BSL) while programming the FLASH using the Philips LPC2000 Flash Utility and to
conversely remove the BSL jumper while debugging.

To ensure that the hardware is set up correctly for FLASH debugging, refer to the
photograph below.

BSL jumper is installed when
programming FLASH memory.

BSL jumper is removed while

debugging.
5 serial cable
eofnfe
10 agaoo attached to
i:ocu'_- ::::. CcCOM1
anO0o0Gaa0ana .
gooono poogegon
gooooooooocoooos
[[} elalelleic) o) ITTe
© : [} o: 1 :-I"[fc_"'-} ":‘?Tupl}f.
000000 30ICE SRR
aooao 1:":\'?:("'1--.|;|-‘.
- eoic treiepee el
L] : [: : : »! r‘_i’t _ |\ < HET C
L] [] "'?:JL‘._!:JL!.‘.J.‘.J“
L eivejefefejeliofofvjcic foicfe fed
R REEEEREERRE R Power plug from
ERREEERERRE L 9 volt wall wart

power supply

Red stripe on ribbon
cable must be next to
Debug JTAG jumper and
the power plug.

The Debug JTAG
jumper MUST be
installed

B. Program Application into FLASH
This was covered in Section 18 of the tutorial.

Using the techniques already discussed, restart Eclipse and open the
“demo2106_blink_flash” project.

Do a “Clean” followed by a “Build All.”

Then start the external tool “Philips LPC2000 Flash Utility” and burn the “main.hex” file
into FLASH, as shown below. You must fit the “BSL” jumper to do this.

| also suggest removing the JTAG ribbon cable from the wiggler while operating the Philips
LPC2000 Flash Utility. Re-connect it when you're finished burning the FLASH memory.

%3 LPC2000 Flash Utility
File Buffer Help

m LPC2000 Flash Utility V2.2.0

Flazh Prograrming Erase / Blank Communication

Filename: _ _ Connected Ta Port;
|workspacehdemo2l 06_blink_flashimair.hes: ... Blank Check ' Entire Device COM1: -
" Selected Sectors

Lze Baud Fate:
o 15200 -
Start Sector:

Eraze ,—
| —————— 1 EndSeotar Time-Out [sec]: |_2

Upload to Flash

Compare Flash

Device Use DTR/ARTS
Device: - | for Reset and
LPC2106 Fead Part 1D [Eoot Loader
HTAL Freq. [kHz] 14745 Device ID Eoot Loader 10 Selection
| |

File Upload Successfully Completed

After successfully burning the executable code into FLASH, be sure to remove the “BSL”
jumper.

C. Create anew FLASH Debug Configuration.
We have already done one of these, creating a “debug configuration” for debugging code
loaded entirely into RAM.

This new configuration will be very similar, just the GDB initialization commands are
different.

First click on the “Debug” button (specifically the pull-down arrow). Then click on
“Debug...”

If-Hel® | g-a8-F-- |- 0-%-|® & |
= —— = EP (@ e ‘ =G 1 demo2106_blink_ram

] | &~ 4F to Debug As L

:
A ne

Ang Organize Favorit
rganiZe Favarites, ..
i prc d
f

_ dermoz 106_blink_Flash
E- dernoz106_blink_ram

The Debug window reveals that we only have one “Debug Configuration” defined under
the Zylin “Embedded debug launch” configurations. This is “demo02106_blink_ram”
designed to debug applications loaded entirely into RAM.

Click on “New” to permit specification of a new Debug Launch Configuration.

| ® Debug x

Create, manage, and run configurations

Canfigurations: Mame: IdemuZlDEu_I:nIink_ram
- [E] CIC++ Attach to Local ,
- [€] CIC++ Local Applicatior . —
- [E] CJC++ Postmortem dek Main | ¥¥ Debugger | B Commands I B/ source I El Comman |
----- & Eclipse Application
=5 Embedded debuglaunct project;

i 20 demoz106_blink_ral
||:Iemu:|21IZIEu_innk_ram Browse. ., |

----- 5] Java Applet
----- 3] Java Application C{C++ Application:

----- Ju JUnit

----- J4 JUnit Plug-in Test

----- Remote Java Applicatio
=] ST Application

| 2

< Mew | Delete | Spply | Revert |

Debug I Close |

|main.uut SearchPrDject...l Browse,.. |

A 1

This will bring up a blank window to define the new “Debug Launch Configuration.”

Click on the “Main” tab.

Give it the name “demo02106_blink_flash” which is the same as the project name.

Likewise, enter “demo02106_blink_flash” as the project name (you could browse for it).

Finally, specify the file “main.out” as the C/C++ application. Note that only the symbols will
be used from this file, we've already programmed the code into FLASH via the Philips

LPC2000 Flash Utility as shown above.

| £ Debug

Create, manage, and run configurations

.

=

Caonfigurations: Mare: | demoz106_blink_Flash
----- [t] CfC++ Attach to Local

----- E CIC++ Local applicatior M -
,,,,, [T] CIC++ Postmortem det Main [Debugger | B Cammands | By Source | =1 Comman |

----- & Eclipse Application
=3¢ Embedded debug launch
5 demn2106_blink_ral

Projech

| demaz 106_blink_flash

Browse... |

1 -5 Mew_configuration
----- B4 Java fpplet CIC++ aApplication:
""" ? ja""i Application iR OLE Search Project. .. | Browse... |
..... w JUni <! >
----- Ju JUnit Plug-in Test
----- '_j Remote Java Application
----- =) W T Application
4 i | |
et Delete e | rever |
Cebug I Close |

Now click on the “Debugger” tab.

Click the “Browse” button and locate the “arm-elf-gdb” debugger. This executable is in the
c:\Program Files\GNUARM\bin\ directory.

Create, manage, and run configurations

Configurations:

----- [E] C/C++ Attach to Local
----- El CC++ Local Applicatior
----- [E] C/C++ Postmortem dek
----- & Eclipse Application

- 5@ Embedded debug launct
¢ demoz106_blink_ral
¢ Mew_configuration
-----] Java Applet

----- 3] Java &pplication

- J& JUnit Plug-in Test
----- (Al Remote Java applicatio
] SwT Application

Debugger: IEmbedded GDE

—Debugger Options

Mame: I demoz 106_blink_flash

Ma Commandsl Eyr Sourcel =] Commonl

d W sStop at main() on startup Advanced.., |

GDE debugger: IC:'I,Program FilesGHNUARMbinY arm-elf-gdb exe ‘ Browse... | ’

£ T} | |
Mew Delete Apply I Brhert I
Debug I Close |
M [13 ” M
Now click on the “Commands” tab. Enter the list of commands as shown.
® Debug [X]
Create, manage, and run configurations
Configurations: Marne: |demo2106_blink_ﬂash
--[E] CjC++ Atkach to Local .
E C)C++ Local Applicatior) \
-[T] CiCH+ Postmartem det Main | %5 Debugge(” B Commands |5y source | = commen |
4@ Eclipse Application
-5 Embedded debug launct cammands
S demoz106_blink_Fl
¢ Bl = !n 8 target remote localhost: G555
¢ demoZz106_blink_rai i aaE
-] Java Applet manitar softbkpts off
[T Java Application symbal-file main.out
- Jur Irik set $pc = 0x0
ja:- Uit Plug-in Test thbresk main
nit Flg-n Tes cantinue
L Remoke Java Application
<[] SWT Application
< I | 3
Mew | Delete | Apply | REiel |
Debug I Close |

The following is a list of commands that are executed when the Eclipse/GDB debugger
starts up.

target remote localhost:8888
monitor reset

monitor softbkpts off
symbol-file main.out

set $pc = 0x0

thbreak main

continue

Let's go through these commands, one-by-one.

target remote localhost:8888

This is a GDB command that specifies communication with the remote target via
Remote Serial Protocol. GDP will use internet port 8888, which is the default port
that the Macraigor OCDRemote uses.

monitor reset

Command sent to OCDRemote that resets the CPU.

monitor softbkpts off
Command sent to OCDRemote that controls breakpoint specification.
softbkpts <ON/OFF>

ON = use both hardware and software breakpoints (default)
OFF = use only hardware breakpoints for stopping and source stepping CPU

This means that all breakpoint commands will be directed to the ARM7 hardware

breakpoint circuits. There are just two hardware breakpoint circuits so you must limit
yourself to only two breakpoints at a time.

symbol-file main.out

This is a GDB command to read the symbol file “main.out” to extract its symbol
information and statement and variable addresses.

set $pc = 0x0

This is a GDB command that sets an ARM register. In this case, we set the PC to
0x000000 so that execution will start from the FLASH reset vector address.

thbreak main
This is a GDB command that sets a “temporary hardware-assisted breakpoint” at the
address symbol “main”.

When the ARM7 breaks at “main”, the temporary breakpoint is automatically
removed.

continue

This is a GDB command to resume execution. This essentially causes the ARM7 to
start execution from the reset vector address 0x0000 and continue through all the
initialization code until the address symbol “main” is reached. Then it will do a
temporary hardware breakpoint.

The “Source” and “Common” tabs are OK to leave in their default condition.

Click on “Apply” and “Close” to finish. Answer “Yes” when the “Save Changes?” dialog
box pops up.

* Save changes?

9P The configuration "demoz106_blink_Flash" has unsaved changes, Do wou
v wish ko save them?

Yes Mo Cancel

At this time, it might be a good idea to click the “debug” button and then the “Organize
Favorites...” menu choice to make sure both of our debug launch configurations are in the
list of favorites. Just repeat the techniques we’ve used before in this tutorial.

& Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Run Window

lei-Hel&(E)0 - ®® ¢ |
N

¢ 1 demoz106_blink_ram

Debug As b

:ta'; Diebing

Organize Favorites, .,

D. Switch to the Eclipse Debug Perspective

Open the “Debug” perspective. You can do this by clicking on “Window — Open

Perspective — Other... - Debug” or you can select the “Debug” button at the upper right of
the screen.

“ Debug - main.c - Eclipse SDK |-7”E|E|
File - Edit Refactor Mavigate Search Project Run Window Help
IB-HE| D% -0-Q%- @@L |H- -5 -5 5| 350ebug BECICH &Mava
| %5 Detug B \ = O [69= variables 52 __kBrBakDO\nt5| W a R & e
AU R T | BT
@ SRR o & =i .EE B = 0|
f’* A A T A N AR T A A T A R TR AT AR LR AR AL AT AL XL LT LT RETRL : lﬂz & .&S @ =~
Function declarations H Initialize Al
R e e P e T T : =
ot feed
ot IRQ_Rautine (
void Initialize (void): ++ FIG_Rootine (
void feedirvroid); - H— SWI_Routine =
~++ UNDEF_Rautine
void IRQ Routine (veoid) _ attribute_ (({interrupt("IRQ"))): = pczionh ‘
rvoid FIQ Roucine (woid) _ attribute ((interrupt("FIQ"))): - @ g _\
roid SWI_Routine (veoid) _ attribute_ ((interrupt("3WI"))): A
void THNDEF Routine (void) atcribute [(interrupt ("UNDEF"™))] ® s
= — — @ h
R T s @ || -
= @ e

E. Start the OCDRemote Utility

As before, you can start OCDRemote by clicking on the “External Tools” button and its
pull-down arrow and then click “OCDRemote”.

S— Tip:

ch Project Rum Window Help
| When you select OCDRemote from the
*@JE@&HH :
—_— | pull-down menu, Eclipse remembers
: il your last selection.

¥ 7 OCDRemate

V

Clicking on the External Tools button
by itself again will automatically select
@ External Toals OCDRemote.

Crganize Favorites, ., m

The “tool-tips” will also tell you what it

Obviously, we're looking for this result. will do.

£ Debug - main.c - Eclipse SDK |;“§|E|

File Edit Refactor MNawigate Search Project Run Window Help

J F‘j T el = | in_jl] ﬁ 2 0 x (L HE |® 9 ‘?n J] v gl v % — Tn ﬁ f&Debug %CJ’C++ aJJava
o Dekug 3. = B |[649= variables EX.-'-._Ereakpoints| £I 2k B | R % o]
| % 5 | S| BT
B--% OCDRemote [Program] o o
ey .E Cicygwiniusklocal binfocdremaoke, exe <@ There |t |S!
@) = EHEE Cukling EX”-' =il
,u"’* ol o o ol o o o o ol ol o o ol o ol o o o ol o o o A. lﬂz ﬁ ‘a? @ =
Function declarations

e s i T

IR _Roukine
roid Initialize (void):; FIQ_Routine
void feed(void) SWI_Rouking =
UMDEF_R.oukine
void IRQ Routine (void) _ attribute (({interrupt ("IRQ"))): LPCZ10x.h
void FIQ Routine (void) _ attribute ((interrupt ("FIQ"))]: q 5
void SWI_Routine (void) _ attribute ((interrupt ("IWI"))): r
void UNDEF_FRoutine (void) _ attribute ([{interrupt ("UNDEF"))): ;
ll."****t*tt******1“1“1“1"1"1“*t*w*#*#**t**t*tt******t********w*t*#* i~ i
H 1 w
B console 32 . Tasks % |Gl #B-r9-70

OCDRemote [Program] C: oy gwiniusrlocalibiniocdremote exe

No error messages
in the console

A

Keep clicking on the OCDRemote button until it synchronizes. If you have no luck, refer to the
suggestions given in the section 21-D concerning debugging of RAM applications.

F. Launch the Debugger

Obviously, we have to launch the right configuration. Click on the “Debug” button and its
pull-down menu. Select the “demo02106_blink_flash” debug launch configuration.

£ Debug - main.c - Eclipse SDK

File Edit Refactor Mavi Seatch Project Run Winc

Ics-E e @ (- vcachece,§

E--{% OZDRemote [Prog Debug As -

: st ﬁ‘; Debug...

Organize Favorites..,

If the debugger launches successfully, you should see the commands executed in the
“console” view and the debugger will halt at main (with no breakpoints set).

Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Run Window Help

I-HE| B |[%-0-%- | @™ [-3 -0 - B | $w0ebug BREC/CH 8avs
/ =
= O |[variables ['n Breakpoints &2 Modules|Registers|5ignals| ol
L R = e e XRFE>-w|BES| T
=y, OCDRemate [Program]
.ﬁ Cioyagwiniusrilocalibinocdremote. exe
G demoz106_blink_flash [Embedded debug launch]
=-§f% Embedded GDE (12/10{05 10:37 PM) (Suspended)
. [Eg® Thread [0] (Suspended)
] = 1 maint) at main.c:46
.,g Debugger Process (12/10{05 10:37 PM)

[£ main.c 22 \‘x = 0| 5= outline 52 _ =m
) .) .:.| laz \@\ ‘0? @ =2
int main (veid) { ~+ Initialize L

feed
int iz /¢ loop counter (stack variasble) IRQ_Rautine
static int a,b,c: // static uninitialized variasbles | FIG_Routine
static char d; /¢ static uninitialized wvarisbles SW_Routing
static int wo=1 /f static initialized wvarisble UNDEF_Routine
static long x = 5; // static initialized wariable LPCZ10x.h
static char ¥ = 0x04; /¢ static initialized wvariable q
static int T /f static initialized wvarisble r =
P const char *pText = "The Rain in Spain®; 5
h
/f Initialize the system i
Initialize(): L
main
PLOCE
// set io pins for led PO.7 s
ICDIE |= 0x00000080; ff pin PO.7 is an output, everything else is input after re Faid = |
k. R O
< il | B2l FIC_Routine ol
Bl console &2 \.\Tasks|Mem0ry| W | Eﬂ EE| M Ei=T = my

demo2106_blink_flash [Embedded debug launch] Debugger Process (12/10/05 10:37 PM)

(gdb) (gdbh) (gdb) (gdb) (gdb) (gdh) target remote localhost:35558
monitor reset

monitor softbkpts off
symbol-file main.out
set §pc = 0x0
thbhreak main

continue

[{={=1=]

The next maneuver is a bit of a mystery. To get the debugger to operate with two
breakpoints, you have to manually enter the GDB console command “delete.”
From the Stallman book “Debugging with GDB.”

“Delete [breakpoints] [range..]

Delete the breakpoints, watchpoints, or catchpoint of the breakpoint ranges
specified as arguments. ITf no argument is specified, delete all breakpoints
(GDB asks for confirmation, unless you have set confirm off). You can
abbreviate this command to d.”

To enter this command manually, click inside the console view after the (gdb) prompt and
type the “delete” command.

m Tasks | Memary

demoz106_blink_Flash [Embedded debug launch] Debugger Process (1271005 10:37 PM)
monitor reset

monitor softhkpts off

svibol-file mwain.out

get fpc = 0=0

thhreak mwain

continue
(gdh) delete < Type this command
(gdb) and hit “enter”

Obviously, when the debugger starts and stops at main, it must be using one of the two
hardware breakpoint circuits as a resource. Entering the delete command manually seems
to take care of it.

| have experimented with putting the delete command in the debugger startup commands
to no avalil. If any of my readers can figure out why this is required, please e-mail me so |
can adjust the tutorial.

My theory is that that temporary breakpoint command “thbreak main” is not removing itself
as advertised, but I'm really not sure of this.

G. Debugging in FLASH

Debugging in FLASH is exactly like debugging in RAM, as described earlier, with just two
exceptions.

e You can only set two breakpoints at a time. If you are stepping, you should
have no breakpoints set since Eclipse needs the hardware breakpoints for
single-stepping.

e If you re-compile your application, you must stop the debugger, re-build and
burn the main.hex file into FLASH using the Philips LPC2000 Flash Utility. The
Eclipse/GDB debugger cannot program FLASH memory.

The right-click menu function “Run to Line” is best in this scenario since it does a
“temporary” hardware breakpoint and you don’t have to remember if you left a breakpoint
on somewhere.

Let's practice with our example. Click on the source line Initialize(); and bring up the right-
click menu. Click on the “Run to Line” menu choice

File Edit Refactor Mavigate Search Project Run Window Help
It HS @ 3-0-%- |8 [&- -5 -0 -0 - E| $postug Ecice e
%Debug bt = B || 0d= yariables &2 Breakpuints|MUduIes|Rag\sters|5ignals| ﬁ = | 5““ b4 & ¥ =08
T R I NS e -
E% OCDRemate [Program]
© g Coeygwintusrilocalbiniocdremate. exe I |
= demoz106_blink_flash [Embedded debug launch]
E-&# Embedded GDE (12/10/05 5:59 PM) (Suspended)
. Bl Thread [0] {Suspended) s
o221 main() at main,ci4s
;H Debugger Process (12710705 8:59 PM)
lm = O/ 82 outine 52 =0
< Unda Typing Chrl+Z
static int w =1) iz initialized varisble ~ A\ e e
static long x = 5: Revert File iz initialized variable T ——
static char y =g Save iz initialized varisble ¥t feed
static int z = cuk Chrl iz initialized wvarisble 4+ IRQ_Routine
> const char *pTe: Copy CHI+C ++ FIQ_Routine
N . Paste Chrly Sy AT M =TRa =Y
£/ Initialize the =syg o o -
Initialize(): €—}—shitkon Cursor is on this line
Shift Left
// set io pins for lg Comment Chrl+f
IODIE |= Ox0O0000020; Uncomment Chrl+, rthing else is input after re 2 ;
IOET = DxBO000080; | agd pock Comment Chrl+Shift+/ @
IOCLR = OxDO0000S0; Remove Block Comment: Chrl4+-3hift+, @
Content Assist Chrl+Space e EI:E:CK
/f endless loop to tg Add Include Chrl+5hift+M f Initigize
while (1) { Farmat Crl+Shift+F @ feed
Show in C/C++ Projects - @ IRG_Routine
for (3 = 0; 3 < § Refact R C - @ FIQ_Routineg
IOSET = 0x000000F Eractor - @ SWI_Routing
for (3 =0; 3 <9 Open Declaration F3 C -+ @ UNDEF_Routine
IOCLR = 0x0000008 oeh pefinition Chrl+Fs =
+ S
¢ G0 ko next member Chrl+Shift+Dawn | >
Go ko previous member Chrl+Shift+Up = S =
B consdle 2 Tasks|MemUry| 4l Declarations » £ | =] Q'—E |) 2 - - g
demo2106_blink_flash [Embedded debug |auss= R fotaroncee e
{gdo) (gdh) (gok) degfre - A
(gdb) (gdb) thbreak in =+ Runtoline
continue jk Resume At Line g =)
(g Z(_;y Add Watch Expression, .. Al
Fun As 4
[E] Diebug As » | \Writable | Smart Insert | 49 25

The debugger will execute to the source line you specified.

Debug - main.c - Eclipse SDK

File Edit Refactor Mavigate Search Project Run Window Help
™) [=) = I=:
If-Halm/#-0-%- | @38 | ¥ -§fl - - B | %50ebug HgcicH+ &dava
35 Debug 52 = O || = yariables EX\Breakpoints|ModuIes|Registers|SignaIs| Xk | Lk & |
O] W L ;%‘E -<§" i %| T)= j = 40740 o]
=a=0
E% OCDRemaote [Program] _g_ E_ 0 =
L e Covgwiniusilocal\binlocdrermote. exe -[x]:c:D N
= demoz106_blink_flash [Embedded debug launch] -[K]:d:
- Embedded GDE (12/10/05 9:21 PM) {Suspended) o |
=g Thread [0] (Suspended) o Tk |
2= 1 main() at main.c:49
by ,E Debugger Process {12/10/05 9:21 PM)
static int w=1; /f static initialized variable] lﬂz " \3 e -
static long x = 5: // static initialized variable Initialize
static char v = 0Ox04; /4 statiec initialized wariasbhle faed
static int z =7 ff static initialized wariskle IRG_Routine
const char *pText = "The Rain in Spain®: FIC_Routine
SWI_Routine
f# Initialize the system o UMNDEF_Routine
» Initialize(]: T LPC210x%.h
W q
/4 set io pins for led PO.7 r
ICDIR |= Ox0O0000080; // pin PO.7 is an output, everything else is input after re 5
IO3ET = 0Ox00000080; /f led off h
IOCLE = 0x00000080; /¢ led on i
1
rmain
PLOGCE
// endless loop to toggle the red LED PO.7T L
it F Initialize
while (1% & feed
IRG_Routine
for (j = 0; j < S5000000; j++): // wait 500 msec FIQ Routine
IOSET = Ox00000080; // red led off SWI_Routine
for (j = 0; j < 5000000; j++): /f wait 500 msec UNDEF_Routine
ICCLE = Ox00000080; /f red led on
|
1 1=
£ il | L&
B corsole 2 Tasks|Mem0ry|] %ﬁIET‘nEMﬂE'Fﬁ':E'

demoz106_blink_flash [Embedded debug launch] Debugger Process (12710005 9:21 PM)

set §$pc = Ox0

[gdb) thbhreak main
[gdb) continue
[{=(=1a3]

| ‘Writable | Smart Inserk | 491 |

Let's step into the initialize() function. Click on the “Step Into” button.

it

Note that we have no breakpoints specified at this point. The debugger executes to the first

source line in the initialize() function and stops.

A4 Fetting Multiplier and Divider walues
PLLCFG=0x23;
feed():

/f Enabling the PLL */
PLLCON=0x1;
feed():

Now let’s click the “Step Over” button to advance one source line.

Now we’re at another function call, feed().

A4 Betting Multiplier and Divider wvalues
PLLCFG=0x23;
» feed() ;

// Enabling the PLL */
PLLCON=0x1;

' feed() :

Now click the “Step Into” button. | Zk_

The debugger will execute to the first source line in the function feed().

roid feedvoid)

i
B PLLFEED=0x4k;
PLLFEED=0xEE:;

Now click the “Step Out” button. |_f!

The debugger will execute out of the feed() routine to the next source line in the calling
function, which is initialize().

A4 Setting Multiplier and Divider wvalues
PLLCFG=0x23;
feed():

/¢ Enabling the PLL */
» PLLCON=0x1;
feed() :

ff Wait for the PLL to lock to set frequehcy
while {! (PFLLSTAT & PLOCE)) ;

Now click the “Step Out” button again. -

The debugger will execute out of the initialize() routine to the next source line in the calling
function, which is main().

Af Initialize the system
Initializel():

/4 Zet io pins for led PO.7T

» ICDIR |= OxO00D0D0DD80: A4 pin PD.7 dis an output, ewn
IGRET = 0Ox00000050; Af led off
IoCLE = 0Ox00000050; /A led on

ff endless loop to togogle the red LED PO.Y
while (1) {

Now let’s set a breakpoint. A good choice is the endless loop at the points where we turn

on the LED. Click on the far left margin to set the breakpoint.

f4 Initialize the system
Initializei);

ff Zet io pins for led PO.7T

while (1] {

for (j = 0; j < 5000000; j++)
breakpoint 5 IO3IET = 0x00000080;
for (j = 0; J < 5000000; j4++):
IOQCLE = 0Ox00000080;

Now click on the “resume” button to execute to the breakpoint.

ff Initialize the system
Initializel):

/¢ set io pins for led PO.7

while (1)

here > % IOSET = 0x00000080;
for (j = O: j < 5000000: j++ J:

IOCLR = 0x00000030;

/¢ endless loop to toggle the red LED

£
i
£
£

FO.7

£
£
£
£

wait

= IODIE |= O0x00000080; A pin PO.7 iz an output, everything
IOIET = 0Ox000000s0; F4 led off
IOCLE = 0Ox0o000oos0; Af led on

500 msec

red led off

wait

E00 msec

red led on

]

/4 endlezz loop to togogle the red LED PO.Y

ICDIR |= 0OxO00000E50; A/ pin PD.7 is an output,
ICRET = 0Ox0000oo0so; Ff led off
IOCLE = 0Ox0ooooosao; FAf led on

everything

wait 500 msec
red led off
wait 500 msec
red led on

If you want to execute normally, remove all the breakpoints (use the breakpoints view to
see all the ones you have used and use the right-click menu to remove all).

Then click on the “Resume” button to execute continuously.

(]

Now the application should run and blink the LED.

If you want to stop execution, hit the “suspend” button. I:":I

In the screen shown below, the debugger has stopped within one of the delay for loops.

M = O || variables
O % | B @ i ¥
=43, OCORemoate [Program] ”~
g Cihowgwiniusriocalibiniocdremote exe
-1 5¢ demoz 106_blink_flash [Embedded debug launch]
&8 Embedded GDE (12/10/05 10:37 PM) (Suspended)
=i Thread [0] {Suspended: Signal 'SIGTRAP' received. Description: Tracefbre
= 1 mainf) at main.c:60
el Debugoer Process (1210005 10:37 PM) '
< | >
(€ main.c &2
IOCLE = 0Ox000000s0; Ff led on
44 endlezs loop to toggle the red LED PO.7T
while (1) |
Debugger g | | | _
stopped it | 5 for (j = 0; j < 5000000; j++ J: A wait 500 msec
IORET = 0x000000s0; Af red led off
for (j = 0; 1 < 5000000; J++): ff wait 500 msec
IOCLRE = 0x00000080; A red led on
+
+

Of course, all the Eclipse debugging features such as “hover” variable display, display of
local and global variables and structures, memory dumps, assembler language debugging,

etc. all work great in this FLASH debugging motif.

I’m not going to repeat that information; please review the material on RAM-based

application debugging and try these features.

If you have to restart the debugger, recall this sequence from our RAM debugging.

. — > | Kills both the OCDRemote and the debugger

- ~

»=..—»| Erases the terminated processes in the tree

5
q ——»| Start the OCDRemote; keep trying until it starts properly.

»| Launch the debugger and download the application

[|JB»—* Start and run to main()

H. FLASH Debugging Check List

If you can commit the following simple points to memory, you will be rewarded with hours of
worry-free FLASH debugging.

e Program the FLASH with the Philips LPC2000 Flash Utility after
compiling (your hex file)

e BSL jumper fitted for FLASH burning, removed for FLASH debugging
e Manually enter the “delete” GDB command after starting the debugger
e Never set more than two breakpoints

e Clear all breakpoints while single-stepping

23 The Author Sounds Off

Last year | decided to see if it was possible to put together a complete, low cost ARM
software development system for embedded programming. Purchasing a commercial
package seemed out of the question since the price ranged from $900 to several thousand
dollars. Affordable quick-start packages typically have a time limit on usage or limitations on
the code size. Microsoft has recently developed “express” versions of their tools for free,
non-commercial use. However, their code targets are typically for the Windows/Intel
platform.

That's when | looked into the GNU tools and the Eclipse platform. They’re open-source and
free. The problem, | discovered, is that the documentation is targeted for experts. The GNU
documentation assumes you are a Linux expert and the Eclipse documentation is targeted
for JAVA programmers. The CDT plug-in for Eclipse currently has no books available for
reference.

Recognizing the difficulty in finding and assembling all these software components, |
decided to make copious notes for myself concerning how | went about this task. The result
is this tutorial; the purpose being a detailed exposition of all the procedures required to
build a completely free ARM software cross development package. This tutorial is designed
for novices; | assume only that you are familiar with C language.

| used the Philips LPC2000 family of embedded ARM controllers as the tutorial’s hardware
examples. These chips are inexpensive, rich in onboard peripherals and contain significant
onboard RAM and FLASH (512K of Flash in the LPC2148). Other manufacturers such as
Analog Devices, Atmel, Cirrus Logic, OKI, ST Microelectronics, Texas Instruments, Intel,
Freescale, Samsung, Sharp and Hynix all produce ARM offerings worthy of consideration.
I’'m sure that many of the ideas in my tutorial can be transposed to these other
manufacturer’s designs.

This tutorial was written for students and grown up “kids at heart”; its purpose is to foster
their interest in computer science and electrical engineering. It described in great detail how
to download and install all the component parts of a complete ARM software development
system and gave two simple code examples to try out. Of course, the beauty of this is that
it's completely free.

I’'m not finished writing tutorials. My next tutorial will involve using ARM interrupts and how
to design and implement 12C port expanders to interface to LCD displays and keypads.
Later tutorials will go into motion control, free real-time operating systems and other
hardware projects. Stay tuned, just like you, I'm just getting started!

24 About the Author

Jim Lynch lives in Grand Island, New York and is a Project Manager for Control
Techniques, a subsidiary of Emerson Electric. He develops embedded software for the
company’s industrial drives (high power motor controllers) which are sold all over the world.

Mr. Lynch has previously worked for Mennen Medical, Calspan
Corporation and the Boeing Company. He has a BSEE from Ohio
University and a MSEE from State University of New York at
Buffalo. Jim is a single Father and has two children who now live
in Florida and Nevada. He has two brothers, one is a Viet Nam
veteran in Hollywood, Florida and the other is the Bishop of St.
Petersburg, also in Florida. Jim plays the guitar and is collecting
woodworking machines for future projects that will integrate
woodworking and embedded computers.

Lynch can be reached via e-mail at: lynchO07@gmail.com

25 Acknowledgements

| have been very fortunate to have the advice and constructive comments from readers all
across the world. | give my heartfelt appreciation to all and specifically to:

Kjell Eirik Andersen is the "R&D Chief Engineer" at Tandberg
Storage ASA, a company that designs and manufactures half-
height LTO tape drives.

* Kjell helped me with the GDB startup commands that prepare
- the debugger for FLASH debugging.

His favorite hobby is playing with small microcontrollers.

Kjell lives in Oslo (Norway) with his family and two cats.

Design/Applications Engineer Spencer Oliver from the United Kingdom also provided me
with valuable guidance on how to set up the Eclipse system for FLASH debugging.
Spencer was too bashful to send me a picture.

26 Some Books That May Be Helpful

The following is a short compendium of books that I've found helpful on the subject of ARM
microprocessors and the GNU tool chain. I've reproduced the Amazon.com data on them.

GCC: The Complete Reference
by’ Arthur Griffith "The GHU Sompiler Collection (GCC) is the rmost imporkant piece of open source software in the world,.." (more)
§IPs: instruction scheduling pararneters, builtin apply, execute the confiqure seript, release eges, call insn (rmore)

List Price: #5352
Price: $39.59 and this item ships for FREE with Super Saver Shipping. See details

You Save: §20.40 (34%)
Availability: Usually ships within 24 hours. Ships from and sold by Amazon.com.

Only & left in stock--order soon {more on the way).

57 used & new available from §3.70
Edition: Paperback

An Introduction to GCC

b\," Brian 1. Gough, Richard M. Stalliman (FDFEWOI’E’) "The purpose of this book is to explain the use of the GHU € and €4+ compilers, gec and

g++..." (marel
5IPs: void hello, math library libm, default gec, object file containing, options gec (more)

q_ﬂlﬂ‘l INSIDE, List Price: $19-05
. Price: $13.57 and eligible for FREE Super Saver Shipping on orders owver $25. See details

You Save: $6.35 (32%)
Availability: Ususlly ships within 24 hours, Ships from and sold by Amazon.com.

14 used & new available from $13.16
Edition: Paperback

ARM Architecture Reference Manual (2nd Edition)

by David Seal
List Price: 5755
Price: $40.24 and this item ships for FREE with Super Saver Shipping. See details
You Save: $17.75 (31%)
Awvailability: Usually ships within 24 hours. Ships from and sold by Amazon.com.
r!.“i AR(..'EIgl'['E.CJ'URL-}
EFERENCE . .
Want it delivered Tuesday, June 217 Order it in the next 44 hours and 57 minutes, and choose

MANUAL
¥ e One-Day Shipping at checkout, See details

} "? m 39 used & new available from $23.00
& Ml @ Edition: Paperback

ARM System-on-Chip Architecture {2nd Edition)
by Steve Furber

WSlDgy List Price: $44:93
i Price: $29.39 and this item ships for FREE with Super Saver Shipping. See details

You Save: $15.60 (35%)
Availability: Usually ships within 24 hours, Ships from and sold by Amazon.com.

Want it delivered Tuesday, June 217 Order it in the next 41 hours and 55 minutes, and choose
One-Day Shipping at checkout. See details

64 used & new available from §20.00
Edition: Paperback

lmalk inzida thiz heal

Embedded System Design on a Shoestring (Embedded Technology Series)

by Lewin Edwards "There exist a large body of literature focused on teaching both general embedded systerns principles and design techniques,

and tips and tricks for specific microcontrollers..." (mare)
5IPs: current output section, bss end, gdb stubs, sourcecode files, cear bss (more)

SEARCH INSIDE!™
Debugging :.
with GDB:

List Price: £49.95
Price: $49.95 and this item ships for FREE with Super Saver Shipping. See details
Availability: Usually ships within 24 hours, Ships from and sold by Amazon.com,

11 used & new available from $47.97
Edition: Paperback

Debugging with GDB: The GNU Source-Level Debugger (Paperback)

by Richard Stallman, Roland H. Pesch, Stan Shebs "vou can use this rmanual 2t your leisure to read all about GDE..." (more)
§IPs: running gdb, wour prograut, gdb data, trace snapshot, seleded stack frame (more)

CAPs: Command Synopsis, Examining the Symbol Table, Command There, Free Software Foundation, Configuration-Specific

Information (more)

Sririrdsy [S custorner reviews

List Price: $38-86
Price: $19.80 & eligible for FREE Super Saver Shipping on orders over $25. See details

You Save: $10.20 (34%)

Availability: Usually ships within 24 hours, Ships from and sold by Amazon.com. See more on holiday shipping.,

Want it delivered Tuesday, December 13?7 Order it in the next 30 hours and 4 minutes, and choose One-Day Shipping =
checkout, See details

18 used & new available from £19.79

The ARM documentation can be downloaded free from the ARM web
site.http://www.arm.com/documentation/

The Philips Corporation has extensive documentation on the LPC2000 series here:

http://www.semiconductors.philips.com/pip/LPC2106.html

All the GNU documentation, in PDF format, is maintained by, among others, the University
of South Wales in Sidney, Australia. | found the GNU assembler and linker manuals very
readable; the GNU C compiler manuals are very difficult

http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/

Of course, the bookstore is full of Eclipse books but they are all about the JAVA toolkit. So
far, no one has published anything on the CDT plugin.

Finally, avail yourself of the many discussion groups on the web:

www.yahoo.com GNUARM group

LPC2000 group
www.sparkfun.com tech support forum
WWW.Nnewmicros.com tech support forum
www.eclipse.org C/C++ Development Tools User Forum

HAVE FUN, EVERYBODY!

http://www.arm.com/documentation/
http://www.semiconductors.philips.com/pip/LPC2106.html
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/
http://www.eclipse.org/newsportal/thread.php?group=eclipse.tools.cdt

APPENDIX 1 - Porting LPC2106 Projects to other Processors

The Olimex LPC-P2106 board was arbitrarily chosen as the hardware example for this
tutorial. Many readers will be interested in how to modify the projects shown in this tutorial
to other ARM processors. This process is not difficult; | will demonstrate conversion of the

demo2106_blink_flash project to the Philips LPC2148 ARM7 processor (specifically the
Olimex LPC-P2148 board).

To make this conversion, you need two things; the Olimex LPC-P2148 schematic and the
Philips UM10139 LPC214x User Manual (can be downloaded from their web sites).

LPC-P2148 PEOTOTYPE FOE LPC2148 ARMVTDIMI-5 MICEOCONTEOLLEER

1
L

e =
-
-
v

— oDoD afslafals
am— D00 alnlafals
oop slafalals)
. oon afalafals
aflalls Ve afalls
= alsls Booop
_—— L1 I3 L] alslalaln
o slsls slafalals
aflafalal ayononp
alalols sfajajays afafslsls
wlelofaye ala"als nong
Ilﬁt?ll-'ili!!ll
afsls & sin]s]ls »
R 0 D 0 CIoOnEin 0 0 6
lilﬂ,!uiiilnl-l
— O O D Dy (R0 r]
. = wisfulapalas e B 0D
afslolalolalo]els sla]ala]s

d 0 0 O IO

oo -

- .

L3
»

Note that the BSL jumper has been replaced with a blue dip-switch #1 at the upper left. Set
towards the crystal is the “run” position; set to the left near the RS-232 connector is the
“flash programming” position. The JTAG jumper and the 20-pin JTAG connector are at the

extreme upper left. The red “reset” button is between the dip-switch and the JTAG
connector.

The “wall wart” power supply, the RS-232 programming cable and the JTAG adapter are all
the same.

Note that there are two LEDs above the two push buttons. The schematic shows that LED1
is connected to GPIO port P0.10. That's different from the LPC-P2106 board.

The schematic also shows that the crystal is 12 MHz. That’s different also. This means that
the Phased Lock Loop (PLL) setup will have to be revised.

The memory map is different as the newer LPC2148 has 512k of FLASH and 40K of RAM.
We'll have to recalculate all stack locations.

The User Manual shows that the LPC2148 supports high-speed 10 ports; this changes the
addressing of the ports if we wish to utilize this new high-speed port feature.

1. Create a New Project

Using the techniques described earlier in the tutorial, create a new Eclipse Standard Make
C project and give it the name “demo2148_blink_flash”.

CfC++ - Eclipse SDK

File Edit Refactor Mavigate Search Projeck |

-He @ | g-68-[d-&

=
187 demaz106_blink_flash
EI 125 demoz106_blink_ram
[+ 1= demoz148_blink_flash

2. Import the Tutorial Files

You can use the “File — Import” pull-down menu and browse to the demo02106_blink_flash
project and pick the following five files to import: [pc210x.h

= crt.s
8 C/C++ Projects main.c
@ BFT demo2106_blink_flash.cmd
7 demo2106_blirk_flash makefile.mak
'L:‘E- demoz106_blink_ram
=125 dema2148_hlink_flash
- (= Ineludes
- [h] Ipcziieh < This is the wrong include file
- [§ crt.s
- [8 main.c
[] demoz106_blink_flash.cmd < change the name of this file.
b gy makefile

3. Find the Right Include File

The include file Ipc210x.h is the incorrect file for the LPC2148. | found an include file
posted by Philips Applications Group on the Yahoo LPC2000 message board.

http://f1.grp.yahoofs.com/v1l/QEeeQyAcAaF5GWXpBCeeHj6uY4N-
C2R5PijwYZB9EU7CRO6X0OIglDhlhsdYnraxKA2y81CdwRCQa9Y-
vwlgle IHhgBWqgGaFiQ/LPC214x.h

That's some web address, isn’t it! Delete the Ipc210x.h file and import the correct one which
is Ipc214x.h.

4, Rename the Linker Command File

Use the Eclipse right-click menu in the projects view and rename the linker command file to
Ipc2148.cmd.

S v = o
LT E c‘l')(:: =
o7 demoz106_hlink_flash
+-12% demoz106_blink_ram

=-1=5 demoz14a_blink_Flash

+ %Includes T . .
- [h] LPC214x.h < This is the correct include file.

+-[8] crt.s

+- [main.c
demoz148_blink_flash.crmd < This is a more appropriate name.
L& makefile

5. Change all Text Strings “2106” to “2148”
Basically, search all five files and replace all occurrences of “2106” with “2148".

The safest thing to do is to open each file and search/replace using the Edit menu. | found
that the “Search” pull-down menu doesn’t look at the makefile.

Most of these changes are to annotation, but in the case of the makefile, it effects a
filename. The linker command file is a good example.

iF 3 iR R R AR R R R R TR
/ demoz 145 blink flash.cmd LINKER SCRIFT
i

i
/* The Linker Script defines how the code and data emitted by the GNUT C cowmpiler and assenbler
i to ke loaded into memory (code goes into FLASH, wvarisbhles go into RAM).

IEs

i Any svymbols defined in the Linker 3Script are automatically global and available to the rest «
/ program.

i

/* To force the linker to use this LINEER SCRIPT, just add the -T demo2l4S blink flash.comd dirde
/* to the linker flags in the makefile.

IEs

i LFLAGS = -Map main.map -nostartfil@s -T demozZl4d blink flash.cmd

i

i

6. Recalculate the Stacks

The memory maps of the LPC2106 ARM processor and the newer LPC2148 ARM
processor are different. The LPC2148 has more FLASH and less RAM. This effects the
stack placement.

40GB . OXFFEF FEFE s0co LPC2148 N
AHB Peripherals AHB PERIPHERALS
175 GB 0xFO00 0000
: 3.75GB DxFODD 000D
WPB Peripherals OxEDDO D000 WPB PERIPHERALS
35GB x 3568 0xE000 DOOD
30GB |- RESERVED ADDRESS SPACE —{ DxC000 000D
20 6B 55T oK DxB000 000D
30GB [| 0xC00D 0000 (12 kB REMAPPED FROM ON-CHIP FLASHMEMORY) | 0. 2eFF DODD
DxTFFF CFFF
Reserved for RESERVED ADDRESS SPACE
External Memory Dx7FDO 2000
Dx7FDD 1FFF
8 kB ON-CHIP USE DMA RAM {LPC2146/2148)
Dx7FD0 000D
DXTFCF FFFF
RESERVED ADDRESS SPACE
Dx4000 BDOO
Ox8000 D000 32 kB ON-CHIP STATIC RAM {LPC2146/2148) Dx4D00 7FFF
0GB Sooi ok 0x4D000 4000
{ra-mapped from Cn-Chip FIash memaory) 16 kB OM-CHIP STATIC RAM (LPC2142/2144) Dx4000 3FFF
Dx4000 2000
& kB ON-CHIP STATIC RAM (LPC2141) Dx4000 1FFF
- {
Reserved for 1.0 GB nglo:ﬁ]: %DFDIEF
On-Chip Memory 04000 FFFF: LPC2106 {64 kB)
0x4000 TFFF: LPC2105 (32 kB) RESERVED ADDRESS SPACE
0x4000 3FFF: LPCZ104 {16 kB) Dx0008 0000
10GB On-Chip Static RAM Ox4000 000D TOTAL OF 512 kB ON-CHIP NON-VOLATILE MEMORY | Dx007 FFFF
. (LPC2148) Dx0004 0000
TOTAL OF 256 kB ON-CHIP NON-VOLATILE MEMORY | Dx0003 FFFF
(LPC2146) Dx0002 0000
TOTAL OF 128 kB ON-CHIP NON-VOLATILE MEMORY | DxDD01 FFFF
(LPC2144) Dx0001 0DOO
TOTAL OF 64 kB ON-CHIP NON-VOLATILE MEMORY | Dx00D00 FFFF
0001 FFE Lecey pianc0 0000
\
128 kB On-Chip Man-Volatile Memory bocs TOTAL OF 32 kB ON-CHIF NON-VOLATILE MEMORY
00 B Ox000D 0000 : (LPC2141) DX0D00 0000

The end-of-RAM for the LPC2106 is at 0x4000FFFF. The end of RAM for the LPC2148 is
0x40007FFF (there also is an 8K RAM block at 0x7FD00000 for USB DMA operations, but
we won't use that for the stacks).

The LPC2148 also has 512K of FLASH eprom.

The linker command file has been reproduced in its entirety below. There is extensive
annotation showing the new memory map for the LPC2148.

The linker commands that have changed are noted also.

PR R e e e e R e R R e e A i

it
it
i
i
i
i
i
i
i
i
i
i
I
I
I
IE
IE
IE
IE
IE
IE
IE
I
I
I
I
I
I
I
I
I
I
FE
FE
FE
At
At
At
At
At
At
At
I
I
I
I
S
A
AE
AE
AE
AE
iF
iF
i
i
i
I
I
I
I
I
I
A
AE
AE
AE
AE
iF
iF
i
i
i
I
I
I
I
I
I
S
AE
AE
AE
AE
AE
iF
i
i

demo2148 blink flash.ecwmd L

INEER SCRIPT

The Linker Script defines how the code and datas ewmitted by the GNU C compiler ahd assewmbler are

to be loaded into wemory (code goes into

Any symbols defined in the Linker Script are automatically global and available to the rest of the

program.

To force the linker to use this LINKER 3SCRIPT, just add the -T demo2l143 blink flash.cwd directive

to the linker flags in the makefile.

LFLLGS =

FLASH,

wvariahles go into RLM) .

-Map main.map -nostarctfiles -T demoZld4S blink flash.cmd

The Philips boot loader supports the ISP (In 3ystem Prograwming) wia the serial port and the IAP
(In Application Prograwming) for flash prograwming from within your application.
The boot loader uses RAM memory and we MUST WOT load wariables or code in these areas.
RALM used by boot loader: 0Ox40000120 - 0x400001FF (223 bytes) for ISP wvariables
Ox40007FE0 - O0x4000FFFF (32 hytes) for ISP and IAP wvariahles
O0x40007EE0 - Ox40007FEOD (256 bytes) stack for ISP and IAP
NEMCRY MAP
| | Dx40005000
=1 |
. | variahles and stack | 0x40007FFF
ram isp_high | for Philips boot loader |
| 32 + E56 = E83 bhytes |
| |
| Do not put anything here | Dx40007EED
= |
| UDF Stack 4 hytes | 0x40007EDC <—————————— _stack_end
= |
| ABT Stack 4 hytes | Dx40007EDS
= |
| FIQ Stack 4 hytes | Dx40007ED4
= |
| IRQ Stack 4 hytes | Dx40007EDD
= |
| SVC Stack 4 bytes | 0x40007ECC
B
| | Dx40007ECS
| stack area for user program |
v	
free ram	
ram	
T T	0x40000234 <——-———————— _bss_end
hss uninitialized wariahles	
IR	Dx40000Z 15
.data initialized variables	
	Dx40000200 <-————————— _data
B	
.	wariables used by Ox400001FF
ram isp_low	Philips koot loader
223 bytes	Dx40000120
>| |
. | | 0x4000011F
ram vectors | free ram |
| | Dx20000040
| | 0x2000003F
| Interrupt Vectors (re-mapped) |
| 64 hytes | Dx 40000000
B |
|
=
Ox0001FFFF

*
*

=
=

=
=

=
=

=
W

W
W

W
W

w
B

w
w

w
w

w
w

"
"
"
=
=
=
=
=
=
=
w
i
i

i
*
*
*
*
*
*

=
=

w
w

i
i
i
*
*
*
*
*
*
*

=
=

w
w

i
i
i
*
*
*
*
*
*
*
=

i . | | i

i . f et e | 0x0000032 L0
i | | w7
i . | copy of .data area | L
i flash | | =
i | | Ox00000314 <-—————————~ _Etext =
I | | *f
i | | 0x00000150 main *
I | | 0x00000278 feed w
I | maini) | 0x000002c4 FIQ Routine w
i | |0x000002d8 SWI_Routine wf
i | |0x000002ec UMDEF_Routine wf
i | | 0x000002b0 IRG_routine *
I | |0x000001cz initialize *
/* | | 0x000000L4 *
i* | Startup Code | L
I | (assewbler) | *f
I | | i
i | | 0x00000040 Reset_Handler *
I | | 0x 0000003 F w
I | Interrupt Vector Tshle junused] | w
i | 64 bytes | wf
i . = | 0x00000000 _startup ®
i *
i *
i The easy way to prevent the linker from loading anything into s wemory area is to define L
i* @& MEMCORY region for it and then avoid assigning any .text, .data or .bss sections into it. L
i i
I i
A MEMORY w
I { w
A ram_isp low(i) : ORIGIN = Ox4000012Z0, LENGTH = 223 w
i =
i i =
i *
i *
/* Author: James P. Lynch L
i i

R AR R AR R T AR R R A R AR R R R AR AR R AR A A AR T AR A AN AR R TR A AR AN R AR AT A TR AN TR AAARATRARTESAA T K

/% identify the Entry Point #/

ENTRY (_startup)

/% specify the LPCZ148 mewory areas */

HEMORY

{
flash : ORIGIN = 0O, LENGTH = S51ZK /* FLASH RON */
ram isp_low(d) : ORIGIN = 0x40000120, LENGTH = 223 /% wvariables used by Philips ISP bootloader */
ram : ORIGIMN = Ox40000200, LEMGTH = 32513 /* free RAM area *
ram isp high(k) : ORIGIN = 0Ox40007FE0, LEMGTH = 32 /% variables used by Philips ISP bootloader */
ram ush_dma : ORIGIN = Ox7FDO0O00OO, LENGTH = 3192 /% on-chip USB DML RAM area (nhot used) wf

/7 define & global symbol _stack end 7/

_stack_end = 0x40007EDC;

£% now define the output sections +/

SECTICONS
i
= 0: /% set location counter to address zero ¥/
startup : { *[.3tartup)! >flash /% the startup code goes into FLLSH #/
.text @ £* collect all sections that should go into FLASH after startup */
{
w.Text] /% all .text sections (code) wf
[.rodata) / all .rodata sections (constants, strings, etc.) Lr
[.rodata¥) / all .rodata* sections (constants, strings, etc.) *7
l.glue 7 £ all .glue 7 sections (no idea what these are) */
T{.glue_7t) F7 oall -glue 7t sections (no idea what these are) =/
_Btext = .: /% define a global symbol _etext just afrer the last code byte i
v »flash /% put all the sbove into FLAZH */
.data /% collect all initialized .data sections that go into RAM +/
{
_data = .; /* create a global svynbol warking the start of the .data section */
* (. data) /% all .data sections ¥/
_edata = .; /% define a global symbol warking the end of the .data section #/
} rram AT »flash /* put all the above into RAM (but load the LMA copy into FLASH) */
.bss : % pollect all uninitialized .bss sections that go into RAM %/
i
_bss_start = .: /% define a global symbol mwarking the start of the .hss section */
*i.has) /7 all .bs3s sections F/
} sram /7 put all the sbove in RAM (it will be cleared in the startup code */
= ALIGN(4): A7 advance location counter to the next 3Z-bit boundary +/
_bss_end = . /7 define a global symbol warking the end of the .bss section */

_end = .; S7 define a global symbol warking the end of application RAM +/

1. PLL Setup

The Olimex LPC-P2148 board has a 12 mhz crystal. The setup of the phased lock loop
(PLL) must be revised.

On page 34 of the LPC214x User Manual are two examples of how to calculate the needed
PLL initialization values. One example is for a system without USB and the other one is for
an application that does employ the USB. This tutorial does NOT use the USB version.
Fosc = 12000000 hz (crystal frequency)
Fcco= 2 (PLL current controlled oscilator frequency)
cclk = 60000000 hz (desired system clock)
cclk 60000000
M= e T s = 5 (PLL multiplier value)
Fosc 12000000

Therefore, we write M-1 or 4 into the 5 bits of the PLLCFG register.

PLLCFG[4:0] = 00100

The PLL divider value, P, must have one of the values 1, 2, 4, 8.

P = e as long as Fcco is in the range of 156 Mhz to 320 Mhz

Let's calculate the high and low limits of Fcco

156000000

R —— = 1.3 (156 Mhz)
60000000 * 2
320000000

R — = 26 (320 Mhz)
60000000 * 2

Obviously, the highest value of P that we can pick is 2. This value will not exceed the
limitation that Fcco is less than 320 Mhz.

Therefore, we look at Table 22 of the Philips LPC214x User Guide and see that a value of
P = 2 will require us to enter binary 01 into bits 6-5 of the PLLCFG register.

PLLCFG = 0 01 00100 = 0Ox24

The only change to the initialize() code in the main.c source code is the setting of the PLL
configuration register, as shown below.

S/ Setting Multiplier and Divider walues
PLLCFG=0x24;

feedl) ;

// Enabling the PLL */
PLLCON=0x1;
feedl) ;

/4 Wait for the PLL to lock to set fregquency
while ' (PLLSTAT & FLOCE]] :

f4 Connect the PLL as the clock source
PLLCON=0%3;
feedl)

/¢ Enabling MAM and setting number of clocks used for Flash mewmory fetch (4 colks in this case)
MAMCRE=0x2Z;
MAMTIM=0x=4;

f/ Setting peripheral Clock (pelk) to 3ystem Clock (cclk)
WPEDIV=0x0;

8. Controling the LED 1/O Port

There are two things to consider here. First, the Olimex LPC-P2106 board had the LED
attached to port PO0.7 while the newer LPC-P2148 board has two LEDs. LED1 is attached
to port P0.10.

Also, the LPC2148 has the new “fast” I/O ports; designed to satisfy the scores of customers
who complained about how slow the toggle rate was on the LPC2106 ports.

In the code snippet from main.c below, note that we set the System Control and Status
Flags Register (SCS) to enable the “fast” /0 ports. The LEDL1 is in the port O setup, so that
is identified as FIOOxxx in the Ipc214x.h file.

MAIN.C Code Snippet

f4 set io pins for led PO.10

3C3 = 0Ox03; {4 select the "fast™ wersion of the If0 ports

FIOODIR |= Ox00000400; A4 pin PO.10 iz an output, evervything slse iz input after reaet
FIOOSET = O0Ox00000400; // led off

FIOOCLE = O0x00000400; /F led on

/4 endless loop to toggle the red LED PO.7
while (1) !

for (1 = 0; j < 5000000; j++) A4 wait 500 msec
FIOOIET = 0x00000400; /7 red led off
for (1 = 0; j < 5000000; j++) A4 wait 500 msec

FIOOCLE = Ox00000400; Af red led on

This completes the conversion of the flash-based demo2106_blink_flash project to the
LPC2148 processor. | noticed that the JTAG/Wiggler works much better on this Olimex
board, this might be a result of every JTAG pin now having 10K pull-up and pull-down
resistors.

For those readers planning to port these example projects to other manufacturers; this will
be much more difficult. Programming onboard flash is usually different. Layout of the 1/0O
pins will certainly be different. There is no substitute for detailed and careful reading of the
manufacturer's User Manuals.

APPENDIX 2 - Cygwin Heap Allocation Problems

Quite unexpectedly, my cygwin/gnuarm system started occasionally crashing due to
a "heap allocation” problem. This can occur during any of the gnuarm utilities (C compiler,
assembler, objdump, etc.)

This is a typical error message:

.compiling

arm-elf-gcc -1./ -c -fno-common -O0 -g main.c

c:\program files\gnuarm\bin\arm-elf-gcc.exe (3828): *** couldn't
allocate cygwin heap, Win32 error 487, base 0x480000, top 0x48A000,
reserve_size 40960, allocsize 40960, page_const 4096

7 [main] arm-elf-gcc 968 fork _parent: child 3828 died waiting

for longjmp before initialization

make: Target "all' not remade because of errors.

In this situation, you may have to change Cygwin’s maximum memory. The following is a
link to the Cygwin description of the procedure.

http://www.cygwin.com/cygwin-ug-net/setup-maxmem.html

To change Cygwin’s maximum memory, click on “Start — Run” and run the program
“regedit”

= Type the name af a program, Folder, docurment, ar
= Inkernet resource, and Windows will open it Far you,

Cpen: | reqedit w |

[Ok][Cancel][Browse...]

When the Registry Editor starts up, you should see the following:

% ' Registry Editor

File Edit View Favorites Help

= B My Computer Mame Type Data

ED HEEY_CLASSES_ROOT (Default) REG_SZ (value not set)
#-58 HKEY_CURRENT_USER

EiEI HKEY_LOCAL_MACHIMNE
- HKEY_LISERS
-0 HEEY CURRENT CONFIG

& i 9l

My ComputeriHKEY _CURRENT_LISER

Click on HKEY_LOCAL_MACHINE — SOFTWARE — Cygnus Solutions — Cygwin” and
you will see the following display.

#: | Registry Editor

File Edit View Favorites Help

= Q My Cormputer Al Mame e Dot
D HKEY_CLASSES_ROCT @(Default) REG 57 (value not set’)
[:I HEEY _CURREMT _LISER,
-0 HKEY_LOCAL_MACHINE |
. @-{Z0 HARDWARE
& sam
{13 SECURITY
=-(a[soFTwarE |
m-{1 Adobe
& (23 america Onling
EQ Analog Devices
Iﬂﬁ apple Computer, I
EG arcsoft
Iﬂ{:l ATI Technologies
IB{:I Borland
-2 BVYRP Software
EQ BYRP Software, Inc
w23 covftsy
IEG Classes
IB{:I Clients
IB{:I Corel

EEC@“”“@ Bring up the right-click menu on the

Cygwin | < s)
 Omotsve Registry value “Cygwin.”
‘{23 Program Op
-3 el

m{h Dell Computer

i LT Rl e ke 1'
i! 1 i! i| i

L

My Computeri\HEEY _LOCAL_MACHIMNELSOF T AREY Cyanus SolukionsCyiguwin

Enter a new DWORD entry “heap_chunk_in_mb” = 0x0000800 (256 mb)” as shown
below.

% Registry Editor

File Edit View Favorites Help

= & My Computer 2| name Type DEE
-(0] HKEY_CLASSES_ROOT REG_S7 fvallie not seb)
-] HKEY_CURRENT_UISER [R¥]heap_chunk_in_mb REG_DWORD Ox00000800 (2045)

2-C3 HKEY_LOCAL_MACHINE
-] HARDWARE

®-{0 5am

[0 SECURITY

=-{C0 SOFTWARE

(10 Adobe

-2 America Online
D Analog Devices
{10 Apple Computer, In
-0 Arcaoft

&-(Z3 ATI Technologies
-1 Borland

{10 BVRP Software
(21 BYRP Software, Inc
-0 coefesy

&1 Classes

=1 Clients

D Corel

BD Cygnus Solutions

Ba Cygwin —
{23 mounts vz - key

{:l Program Sp Skring Walue
D Dell Binary Yalue
(-2 Dell Computer

N s Wt R

o] alue

<) I} l;l < Mulki-String Yalue 3|

Expandable String Walue
IMy Computer\HKEY_LOCAL_MACHINE,SOFTWARE\Cygnus Solutions\Cygwi

wall

Reboot your computer and pray!

	ARM Cross Development with Eclipse
	Version 3
	Key features

	Downloading the GNUARM Compiler Suite
	Installing the Philips LPC2000 Flash Utility into Eclipse
	Installing the Macraigor OCDremote Utility

