

LPC-E2124

Get Started Guide

Revision 1.0 28/03/2005

Introduction Picture

Schematic

Board <u>Peripherials</u>

Technical characteristics

JTAG Connector USB Connector

Ethernet Connector **Extension Port**

Dallas Connector

<u>Jumpers</u>

RS232 Programming

RTC Programming

Blinking led

Links

Introduction

The LPC2124 are based on a 16/32 bit ARM7TDMI-S™ CPU with real-time emulation and embedded trace support, together with 128/256 kilobytes (kB) of embedded high speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at maximum clock rate. For critical code size applications, the alternative 16-bit Thumb Mode reduces code by more than 30% with minimal performance penalty.

With their compact 64 pin package, low power consumption, various 32-bit timers, 4-channel 10-bit ADC, PWM channels and 46 GPIO lines with up to 9 external interrupt pins these microcontrollers are particularly suitable for industrial control, medical systems, access control and point-of-sale. With a wide range of serial communications interfaces, they are also very well suited for communication gateways, protocol converters and embedded soft moderns as well as many other general-purpose applications.

The LPC-E2124 Development board is designed to evaluate LPC2124 processor. It has the following features:

- CS8900 Ethernet interface
- two general purpose buttons
- potentiometer connected to analog input 0
- Dallas i-button interface
- 24LC515 EEPROM for external web storage
- standard JTAG connector with ARM 2x10 pin layout for programming/debugging with ARM-JTAG
- two on board voltage regulators 1.8V and 3.3V with up to 800mA current
 single power supply: +5VDC required
- three LAN status LEDs, three general purpose status LEDs
- power supply filtering capacitor
- USB to RS232 interface
- RESET circuit with external control of Philips ISP utility via USB/RS232
- RESET button
- DBG jumper for JTAG enable
- BSL jumper for bootloader enable
- JRST jumper for enable/disable external RESET control by RS232
- 14.7456 Mhz crystal
- extension header for all uC ports
- PCB: FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print
- Dimensions: 80x90 mm (3.15x3.55")

The purpose of this guide is to describe LPC-P2124 Development board.

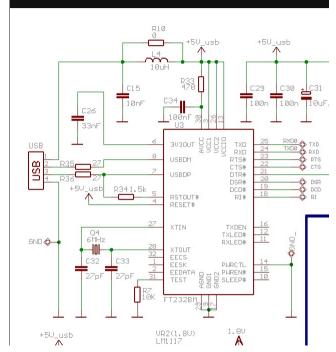
<u>Board</u>LPC-E2124 <u>Hardware details</u> Describes the hardware peripherials in detail

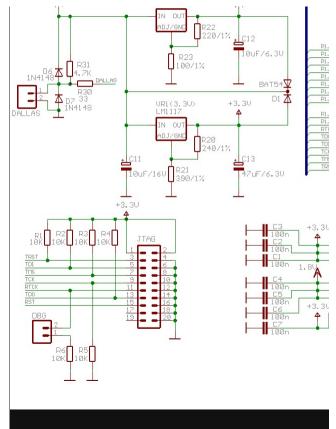
Programming describes how to write programs for the E2124 Board.

Revision 01.01.2005 Creating

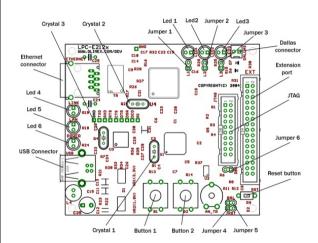
Copyright (c) OLIMEX Ltd. All rights reserve

Picture


This is picture of LPC-E2124 Development board.

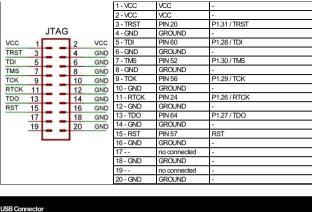


Board LPC-E2124


E2124

E2124 Board

LPC E2129 Hardware description


Peripherials

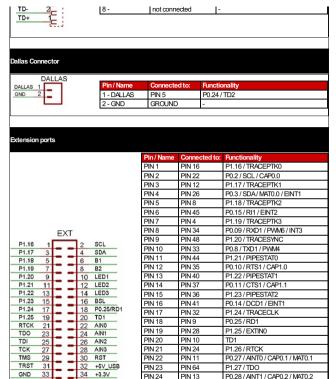
Unit	nit Description	
Ethernet connector RJ45 Ethernet connector		
USB Connector	USB connector type B	
JTAG Connector	2x10 0,1" step connector for programming with ARM-JTAG.	
Dallas Connector	Interface to Dallas device connected to P0.24 / TD2 (PIN 5).	
Buttons	Two buttons connected to interrupt ports Button 1 - P0.15 /R11 / EINT2 (PIN 45) Button 2 - P0.9 / RXD1 / PVMM6 / EINT3 (PIN 34)	
Leds	Red status led (L1) connected to P0.8 / TXD1 / PWM4 (PIN 33) Green status led (L2) connected to P0.10 / RTS1 / CAP1.0 (PIN 35) Yellow status led (L3) connected to P0.11 / CTS1 / CAP1.1 (PIN 37) and three I AN status led's	

Technical characteristics

Parameter	Description
Voltage Supply	+ 5.0V DC from USB
CPU	LPC2124
Crystals	Crystal 1 - Q1 - 14,745 MHz crystal Crystal 2 - Q2 - 20 MHz crystal Crystal 3 - Q4 - 6 MHz crystal
Board dimensions	80x90 mm (3.15x3.55")
PCB	FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print
Operating Temperature	form 0°C to 70°C

JTAG Connector

OSD COILLECT



Pin / Name	Connected to:	Functionality	
1 - +5V	+5VDC	-	
2 - USBDM	FT232BM(PIN 8)	USBDM	
3 - USBDP	FT232BM(PIN 7)	USBDP	
4 - GND	GROUND	-	

Ethernet Connector

	Pin / Name	Connected to:	Functionality	
-	1 - TD+	CS8900APIN 87	TXD+	
	2 - TD-	CS8900APIN 88	TXD-	
	3 - RD+	CS8900APIN 91	RXD+	
	4 -	not connected	-	
	5 -	not connected	-	
	6 - RD-	CS8900APIN 92	RXD-	
	7 -	not connected	-	

PIN 25

PIN 26

PIN 27

PIN 28

PIN 29

PIN 30

PIN 60

PIN 14

PIN 56

PIN 15

PIN 52

PIN 57

P1 28 / TDI

P1 29 / TCK

P1.30/TMS RST

P0.29 / AINT2 / CAP0.3 / MAT0.3

P0.30 / AINT3 / EINT3 / CAP0.0

PIN 32	+5VUSB	-
PIN 33	GROUND	-
PIN 34	+3.3V	i

P1.31/TRST

PIN 20

Jumpers

Jumpers	Position	Description
		Red led is not connected.
Jumper 1 (L1)	•	Red led connected to P0.8 / TXD1 / PWM4 (PIN 33).
lumpor 2 (L2)	0	Green led is not connected.
Jumper 2 (L2)	9	Green led connected to P0.10 / RTS1 / CAP1.0 (PIN 35).
Jumper 3 (L3)	0	Yellow led is not connected.
Juliipei 3 (L3)		Yellow led connected to P0.11 / CTS1 / CAP1.1 (PIN 37).
Jumper 4 (JRST)		Disable ICSP programming.
Jumper 5 (BSL)		Enable ICSP programming - via USB Connector (virtual COMport).
Jumper 6 (DBG)	0	Disable JTAG programming.
		Enable JTAG programming.

PIN 31

Programming: RS232

RS232 Connector

	Pin / Name	Description
RS232	1-CD	Carrier Detected.
CD 1	2-RXD	Received Data.
RXD 2 6 DSR	3-TXD	Transmited Data.
TXD 3 7 RTS	4 - DTR	Data Terminal Ready.
DTR 4 8 CTS	5 - GND	Signal Ground.
GND 5 3 9 RI	6-DSR	Data Set Ready.
	7-RTS	Request to Send.
	8-CTS	Clear to Send
1	9-RI	Ring Indicator.

Register description

Register	Address	Function
U0RBR	0xE000C000 DLAB = 0	Receiver Buffer Register. Input data buffer.
U0THR	0xE000C000 DLAB = 0	Transmit Holding Register. Output data buffer.
U0DLL	0xE000C000 DLAB = 1	Divisor Latch LSB.
U0DLM	0xE000C000 DLAB = 1	Divisor Latch MSB.
U0IER	0xE000C004 DLAB = 0	Interrupt Enable Register.
U0IIR	0xE000C008	Interrupt ID Register.
U0FCR	0xE000C008	FIFO Control Register.

U0LCI	0xE000C00C	Line Control Register.			
U0LSI	R 0xE000C014	Line Status Register.	Line Status Register.		
UOSC	R 0xE000C01C	Scratch Pad Register.			
U0TE	R 0xE000C030	Transmit Enable.			
<u>1.Initial</u> 1.1. Set	ization Line Control Register				
U0LCR	Function	Description	Reset Value		
1:0	Word Length Select	00: 5 bit character length 01: 6 bit character length 10: 7 bit character length 11: 8 bit character length	0		
2	Stop Bit Select	0: 1 stop bit 1: 2 stop bits (1.5 if U0LCR[1:0]=00)	0		
3	Parity Enable	0: Disable parity generation and checking 1: Enable parity generation and checking	0		
5:4	Parity Select	00: Odd parity 01: Even parity 10: Forced "1" stick parity 11: Forced "0" stick parity	0		
6	Break Control	0: Disable break transmission 1: Enable break transmission. Output pin UART0 TxD is forced to logic 0 when U0LCR6 is active high.	0		

0: Disable access to Divisor Latches Divisor Latch Access 1: Enable access to Divisor Latches

1.2 UARTO Baudrate Calculation

The UODLL and UODLM registers together form a 16 bit divisor where UODLL contains the lower 8 bits of the divisor and UODLM contains the higher 8 bits of the divisor.

n

```
devisor = pclk / (16 * baud);
```

1.3. Set Functionality to pins

Set. functionality to P0.0 -> TX0 and P0.1 -> RXD0

2. RS232 Communication 2.1 Write to RS232

- Use follow algorithm to send data:
- fill U0THR register with data to write - wait shift all data
- clear interrupt flag 2.2 Read from RS232

Use follow algorithm to receive data:

- wait read all data - clear interrupt flag
- get data from U0RBR

3. Example

Initialize:

```
//set Line Control Register (8 bit, 1 stop bit, no parity, enable DLAB)
UOLCR bit.PE = 0x0; //no parity
UOLCR bit.DLAB = 0x1; //enable DLAB
//devisor
```

```
//set functionality to pins: port0.0 -> TX0, port0.1 -> RXD0
PINSELO_bit.PO_0 = 0x1;
PINSELO_bit.PO_1 = 0x1;
```

UODLL = Pclk / (16 * baud); //low bite UODIM = Pclk / (16 * baud)>>8; //high bite

Read Data: //when UOLSR bit.DR is 1 - UORBR contains valid data

UOLCR &= ~0x80;

while (UOLSR_bit.DR == 0); return UORBR;

Write Data:

//when UOLSR bit.THRE is 1 - UOTHR contains valid data. while (UOLSR bit.THRE == 0);
UOTHR = ch0;

Copyright (c) OLIMEX Ltd. All rights reserve

Programming: Real Time Clock

Register description

Register	Address	Function
ILR	0xE0024000	Interrupt Location. Reading this location indicates the source of an interrupt. Writing a one to the appropriate bit at this location clears the associated interrupt.
СТС	0xE0024004	Clock Tick Counter. Value from the clock divider.
CCR	0xE0024008	Clock Control Register. Controls the function of the clock divider.
CIIR	0xE002400C	Counter Increment Interrupt. Selects which counters will generate an interrupt when they are incremented.
AMR	0xE0024010	Alarm Mask Register. Controls which of the alarm registers are masked. RW
CTIME0	0xE0024014	Consolidated Time Register 0
CTIME1	0xE0024018	Consolidated Time Register 1
CTIME2	0xE002401C	Consolidated Time Register 2

1.Initialization

1.1. Turn on the 32KHz external clock

CLKSRC (bit 4 from CCR Register) 0 - Disable 32kHz external clock

1 - Enable 32kHz external clock

1.2. Enable Interrupt

CIIR Function Description

I IMSEC | Mean and an increment of the Second value concretes an interrunt

1	IMMIN	When one, an inc	rement of the Minute value generates an interrupt.	
2	IMHOUR	When one, an increment of the Hour value generates an interrupt.		
3	IMDOM	When one, an inc	crement of the Day of Month value generates an interrupt.	
4	IMDOW	When one, an inc	crement of the Day of Week value generates an interrupt.	
5	IMDOY	When one, an inc	crement of the Day of Year value generates an interrupt.	
6	IMMON	When one, an inc	rement of the Month value generates an interrupt.	
7	IMYEAR	When one, an inc	prement of the Year value generates an interrupt.	
1	- Disable F - Enable R	I from CCR Regis Real Time Clock eal Time Clock	ter) Enable/Disable Real Time Clock	
Initia	CCR_bit.C CCR_bit.C CCR_bit.C AMR	LKSRC = 1; TCRST = 0; TTEST = 0; = 0;	//rtc disable //set external 32kHz oscillator //disable reset //disable test //initialize interrupt mask register of RTC	
	JIIK_DIT. ILR	IMSEC = 1; = 3:	//enable interupt every seconds //clear all interrupt of RTC	
		LKEN = 1;	//rtc enable	

O INDEO IMPRENDITE, ANTINGEMENTO THE DECOND VALUE GENERALES ANTINGEMENT.

Programming: Blinking LED

GPIO Register map

Generic name	Description
IOPIN	GPIO Port Pin value register. The current state of the GPIO configured port pins can always be read from this register, regardless of pin direction and mode. Activity on non-GPIO configured pins will not be reflected in this register.
IOSET	CPIO Port Output set register. This register controls the state of output pins in conjunction with the IOCLR register. Writing ones produces highs at the corresponding port pins. Writing zeroes has no effect.
IODIR	GPIO Port Direction control register. This register individually controls the direction of each port pin.
IOCLR	CPIO Port Output clear register. This register controls the state of output pins. Writing ones produces lows at the corresponding port pins and clears the corresponding bits in the IOSET register. Writing zeroes has no effect.

Pin Connect Block Register Map

Register name	Description	
PINSEL0	PINSEL0 Pin function select register 0 (from P0.0 to P0.15)	
PINSEL1	PINSEL1 Pin function select register 1 (from P0.16 to P0.31)	
PINSEL2	PINSEL2 Pin function select register 2	

1. Initialization (general case)

1.1. Set first functionality to port

```
1.2. Set port which is connected to LED as output
```

```
IOODIR = 0xFF; //set P0.0 to P0.15 port as output
```

2. Led blink (general case)

```
IOOCLR = 0xFF; // set P0.0 - P0.15 to low IOOSET = 0xFF; // set P0.0 - P0.15 to high
```

3. Example - blink led, which is connected to P0.8

//Initialization

```
PINSELO_bit.PO_8 = 0x0; // set first functionality to port IOODIR_bit.PO_8 = 0x1; // set PO.8 port to output IOOSET_bit.PO_8 = 0x1; // set PO.8 port to high
```

//loop forever

while(1)

l inks

4	Dhiling	woh	nita

LPC2124 product datasheets, application notes, etc info:

http://www.semiconductors.philips.com/

2. LPC microcontrollers discussion forum

http://groups.yahoo.com/group/lpc2000/ - forum for discussions on LPC2000 ARMmicrocontrollers

http://groups.vahoo.com/group/arm-olimex/ - forum for discussions on Olimex ARM boards

3. IAR Systems EW-ARM C compiler and debugger

http://www.iar.com/Products/?name=EWARM

4. Rowley associates CrossWorks for ARM C compiler and debugger

http://www.rowley.co.uk

Copyright (c) OLIMEX Ltd. All rights reserve