
Introduction to OLIMEX ODS

Olimex ODS (OpenOCD Development Suite) is a great tool for

programming and debugging ARM chips in the familiar Eclipse

environment. It features several open-source tools as well as

numerous preconfigured basic projects for OLIMEX boards.

� What is Olimex ODS?

To create the OpenOCD Development Suite we combined

several open-source tools into one easy to use package:

� The Eclipse IDE – one of the most widely-used open-

source IDEs in the world. We used the CDT version of

Eclipse Helios as the basis for OlimexODS. You can find

all the documentation on Eclipse Helios here:

http://help.eclipse.org/helios/index.jsp

� The YAGARTO (Yet Another GNU Arm Toolchain)

toolchain as the compiler. You can find the YAGARTO

project here:

http://sourceforge.net/projects/yagarto/

You can find links to extensive documentation in the

/yagarto/ folder in ODS

All the code debugging in ODS is done using arm-none-

eabi-gdb – you can see all the secific commads with

which Zylin calls gdb in each of the projects’ own debug

configuration.

� Zylin Embedded CDT for Eclipse

http://opensource.zylin.com/embeddedcdt.html

� OpenOCD – a tool for flashing ARM chips using a

number of different JTAG adapters. We do our best to

include the latest stable release in each new release of

ODS. The best source for information on OpenOCD

common comands and practices is the OpenOCD manual

pdf file included in the /openocd/ folder of ODS, as well

as the Readme fies of each project.

� The structure of an ODS Project

Each project in the default workspace is

configured to work with a specific OLIMEX

board. The projects usually do somehing basic

such as blink LEDs, which makes them perfect

to use as a basis for your more complicated

projects.

Note: There is a tutorial on how to create a

new project as a copy of an existing one (with

all the proper configuration) –

EclipseTutorials.pdf located in the main ODS

directory.

We try to make the structure of the projects as

similar to one another as possible. Let’s take a look at the

structure of the STM32-P103_blink_FLASH project:

� The first part of the project name – STM32-P103 shows

which olimex board the project is intended for.

� The middle part of the project name hints at what the

project actually does – in this case blink the board LEDs.

� The last part of the project name shows which memory

region the compiled code is intended for. This could be

internal FLASH(most common), internal RAM, external

FLASH, external RAM etc. These regions are mapped to a

specific address – in ODS this is usually done in the

openOCD chip-specific .cfg files(discussed later in this

article) or the startup code(.s). If you want to know more

about how your chip operates, search for “memory

mapping” in your reference manual.

� Every project has a _README plain text file with

important notes – some are specific to the project, some

are common and can be found in all _README files.

� Source code

o The main.c file – the main entry point for your

application after the startup code does its job

o Stm32f10x_conf.h – the configuration file for the

STM32f1x peripheral libraries, contained in the

/lib/inc/ and /lib/src/ directories

o Stm32f10x_it files – this is where the interrupt

handlers are usually defined and implemented

o The /lib/ subdirectory also contains startup files,

linker scripts and some other core files, needed for

a successful compilation.

� project.cfg - this is a standard OpenOCD cfg file, loaded

when you launch your external tool (your hardware

debugger) from the Eclipse interface. Each external tool

configured by us calls by default a “project.cfg” file

located in the main project dir. Here, the board-specific

.cfg file is called. You can put your additional project-

specific OpenOCD commands here – there is no need to

edit the general board- and target-specific .cfg files

bundled with OpenOCD.

We aim to provide a board-specific .cfg file for each

board we include in the workspace. These files call the

chip-specific .cfg files, as well as define some constants

rekated to memory. For example, the olimex-stm32-

p103.cfg file looks like this:

Work-area size (RAM size) = 20kB for STM32F103Z

set WORKAREASIZE 0x5000

source [find scripts/target/stm32f1x.cfg]

A lot of detailed information on the .cfg files heirarchy

and structure can be found in the OpenOCD manual.

� The Makefile – each project comes with a specific

Makefile. You may need to edit the makefile if you wish

to include additional files and folders. Refer to the GNU

Toolchain documentation for Makefile-specific questions.

� The Debug Configuration – each project has a specific

set of commands passed by Zylin to GDB(and through

GDB to the already launched and successfully connected

OpenOCD) to enable visual debugging of the project’s

source code using all of the powerful tools of the Eclipse

environment.

You can access the options for the project debug

configuration in the following way:

The different tabs contain all the settings for the GDB

debugger. The one which is usually specific to a project is

the Commands tab, where the commands for GDB and

the OpenOCD flashing process are. In this case:

target remote localhost:3333

monitor reset halt

monitor wait_halt

monitor sleep 100

monitor poll

monitor flash probe 0

monitor flash write_image erase main.bin 0x08000000

monitor sleep 200

monitor soft_reset_halt

monitor wait_halt

monitor poll

thbreak main

continue

Here, GDB connects to OpenOCD via port 3333, sends

the the commands for flashing and resetting to

OpenOCD(always preceeded by “monitor”), inserts a

temporary hardware breakpoint at the beginning of

main() and starts the debugging process.

At this point the Eclipse GUI switches to the Debug view

and begins highlighting your code. Now you can make

use of all of Eclipse’s debugging tools – step through

your code, watch variables, registers and many more.

� Launching your project

The usual steps for launching a project are:

� Build your project

� Connect your hardware debugger to your PC and the

board

� Power on your board - depending on the board this

could be done through USB, some ext. power supply, the

JTAG itself etc.

Important: Always supply your board as described in the

board’s manual. Too much power and you will damage it;

too little and the flashing process will fail.

Always consult the _README for the specific project,

there are cases in which a complete relaunch is needed

for the project to start debugging successfully for the

second time.

� Launch the appropriate External Tool from the Eclipse

interface, like so:

This usually needs to be done only once while you are

working on a specific project if there are no errors with

debugging. Always consult the _README and the Console

output.

� Launch the debug configuration with your project’s

name:

� At this point the Eclipse IDE will switch to the Debug

view and you can start debugging your code.

� Notes

If you have any questions or wish to report a bug, you can

contatct Olimex support via e-mail:

support@olimex.com

or write in our forum:

https://www.olimex.com/forum/

20 March 2013

